Periodic solutions of partially superquadratic second order Hamiltonian systems

被引:4
|
作者
Jiang, MY [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
关键词
periodic solutions; superquadratic Hamiltonian systems;
D O I
10.1016/j.na.2005.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic solutions of the Hamiltonian system - x(two over dots) = V' (X) with V being superquadratic in some directions at infinity. Some theorems on periodic solutions for superquadratic V are generalized. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1946 / 1961
页数:16
相关论文
共 50 条
  • [11] Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential
    Wang, Zhiyong
    Zhang, Jihui
    Zhang, Zhitao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3672 - 3681
  • [12] MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND-ORDER PERTURBED HAMILTONIAN SYSTEMS WITH LOCAL SUPERQUADRATIC CONDITIONS
    Liu, Yan
    Guo, Fei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3247 - 3261
  • [13] PERIODIC AND SUBHARMONIC SOLUTIONS FOR A CLASS OF SUPERQUADRATIC FIRST ORDER HAMILTONIAN SYSTEMS
    Wang, Zhiyong
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2023, 15 (04): : 381 - 393
  • [14] Periodic solutions for a class of superquadratic Hamiltonian systems
    Tao, Zhu-Lian
    Yan, Shang'an
    Wu, Song-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 152 - 158
  • [15] Homoclinic solutions for second order discrete Hamiltonian systems with superquadratic potentials
    Chen, Huiwen
    He, Zhimin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1147 - 1160
  • [16] Periodic solutions for second order Hamiltonian systems
    Qiongfen Zhang
    X. H. Tang
    Applications of Mathematics, 2012, 57 : 407 - 425
  • [17] Periodic solutions of second order Hamiltonian systems
    Llibre, Jaume
    Makhlouf, Amar
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 214 - 221
  • [18] Periodic solutions for second order Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    APPLICATIONS OF MATHEMATICS, 2012, 57 (04) : 407 - 425
  • [19] PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS
    D'Agui, Giuseppina
    Livrea, Roberto
    MATEMATICHE, 2011, 66 (01): : 125 - +
  • [20] Multiple periodic solutions for superquadratic first-order discrete Hamiltonian systems
    Chen, Shang-Jie
    Tang, Chun-Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 495 - 500