Are genetic algorithms useful for the parameter estimation of FM signals?

被引:31
|
作者
Djurovic, Igor [1 ]
Simeunovic, Marko [1 ]
Lutovac, Budimir [1 ]
机构
[1] Univ Montenegro, Dept Elect Engn, Podgorica 81000, Montenegro
关键词
Polynomial-phase signals; Genetic algorithms; Parameter estimation; Cubic phase function; High-order ambiguity function; ORDER AMBIGUITY FUNCTION; CUBIC PHASE FUNCTION;
D O I
10.1016/j.dsp.2012.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The estimation of polynomial-phase signals (PPSs) is a multiparameter problem, and the maximum likelihood (ML) optimization functions have numerous local optima, making the application of gradient techniques impossible. The common solution to this problem is based on the phase differentiation (PD) techniques that reduce the number of dimensions but, at the same time, reduce the accuracy and generate additional difficulties such as spurious components and error propagation. Here we show that genetic algorithms (GAS) can serve as a powerful alternative to the PD techniques. We investigate the limits of accuracy of the ML technique, and of some alternatives such as the high-order cubic phase function (HO-CPF) and high-order Wigner distribution (HO-WD). The ML approach combined with the proposed GA setup is limited up to the fifth-order PPS, which is not sufficient in many applications. However, the HO-CPF and HO-WD techniques coupled with the GA are able to accurately estimate phase parameters up to the tenth-order PPS. They significantly improve the accuracy with respect to the high-order ambiguity function (HAF) and product HAF (PHAF) and, for higher-order PPSs, they are much simpler and more efficient than the integrated generalized ambiguity function (IGAF). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1137 / 1144
页数:8
相关论文
共 50 条
  • [41] Efficient active sonar parameter estimation using linear FM signals via Hermite decompositions
    Sharif, Md. Raihan
    Abeysekera, Saman S.
    OCEANS 2006 - ASIA PACIFIC, VOLS 1 AND 2, 2006, : 811 - 815
  • [42] Parameter estimation for locally linear FM signals using a time-frequency Hough transform
    Cirillo, Luke
    Zoubir, Abdelhak
    Amin, Moeness
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (09) : 4162 - 4175
  • [43] Optimal phase parameter estimation of random amplitude linear FM signals using cyclic moments
    Queensland Univ of Technology, Brisbane, Australia
    ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, (1557-1560):
  • [44] Parameters estimation of multi-sine signals based on genetic algorithms
    Song, Changzhe
    Liu, Guixi
    Zhao, Di
    INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 1013 - 1017
  • [45] Genetic algorithms in parameter estimation for nonlinear regression models: an experimental approach
    Kapanoglu, Muzaffer
    Koc, Ilker Ozan
    Erdogmus, Senol
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (10) : 851 - 867
  • [46] Parameter estimation of an anisotropic damage model for concrete using genetic algorithms
    Wardeh, Muhammad A.
    Toutanji, Houssam A.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2017, 26 (06) : 801 - 825
  • [47] Using real-coded genetic algorithms for Weibull parameter estimation
    Thomas, G.M.
    Gerth, R.
    Velasco, T.
    Rabelo, L.C.
    Computers and Industrial Engineering, 1995, 29 (1-4): : 377 - 381
  • [48] Parameter estimation of nonlinear systems in noisy environments using genetic algorithms
    Sheta, AF
    DeJong, K
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1996, : 360 - 365
  • [49] Parameter estimation of Wiener-Hammerstein models via genetic algorithms
    Emara-Shabaik, H
    Abdel-Magid, YL
    Al-Ajmi, KH
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (1C) : 49 - 61
  • [50] Parameter estimation in mathematical models using the real coded genetic algorithms
    Tutkun, Nedim
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3342 - 3345