Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19

被引:15
|
作者
Kumar, Santosh [1 ]
Gupta, Sachin Kumar [2 ]
Kumar, Vinit [3 ]
Kumar, Manoj [4 ]
Chaube, Mithilesh Kumar [5 ]
Naik, Nenavath Srinivas [1 ]
机构
[1] Int Inst Informat Technol IIIT Naya Raipur, Dept Comp Sci & Engn, Naya Raipur 4933661, Chhattisgarh, India
[2] Shri Mata Vaishno Devi Univ, Sch Elect & Commun Engn, Katra, J&K, India
[3] Galgotias Coll Engn & Technol, Greater Noida 201306, India
[4] Univ Wollongong Dubai, Fac Engn & Informat Sci, Dubai Knowledge Pk, Dubai, U Arab Emirates
[5] Int Inst Informat Technol IIIT Naya Raipur, Dept Math Sci, Naya Raipur 4933661, Chhattisgarh, India
关键词
Deep learning; Machine Learning; COVID-19; Ensemble Learning; Fusion; PREDICTION;
D O I
10.1016/j.compeleceng.2022.108396
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few years, the awful COVID-19 pandemic effect has become a lethal sickness. The processing of the gathered samples requires extra time due to the use of medical diagnostic equipment, methodologies, and clinical testing procedures for the early diagnosis of infected individuals. An innovative multimodal paradigm for the early diagnosis and precise categorization of COVID-19 is put up as a solution to this issue. To extract distinguishing features from the prepared chest X-ray picture and cough (audio) database, chest X-ray-based and cough-based model are used here. Other public chest X-ray image datasets, and the Coswara cough (audio) dataset containing 92 COVID-19 positive, and 1079 healthy subjects (people) using the deep Uniform-Net, and Convolutional Neural Network (CNN). The weighted sum -rule fusion method and ensemble deep learning algorithms are utilized to further combine the extracted features. For the early diagnosis of patients, the framework offers an accuracy of 98.67%.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Chest X ray and cough sample based deep learning framework for accurate diagnosis of COVID-19
    Kumar, Santosh
    Nagar, Rishab
    Bhatnagar, Saumya
    Vaddi, Ramesh
    Gupta, Sachin Kumar
    Rashid, Mamoon
    Bashir, Ali Kashif
    Alkhalifah, Tamim
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [42] Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review
    Mondal, M. Rubaiyat Hossain
    Bharati, Subrato
    Podder, Prajoy
    CURRENT MEDICAL IMAGING, 2021, 17 (12) : 1403 - 1418
  • [43] Early prediction of COVID-19 using ensemble of transfer learning.
    Roy, Pradeep Kumar
    Kumar, Abhinav
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [44] An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model
    Yousefpanah, Kolsoum
    Ebadi, M. J.
    Sabzekar, Sina
    Zakaria, Nor Hidayati
    Osman, Nurul Aida
    Ahmadian, Ali
    ACTA TROPICA, 2024, 257
  • [45] A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling
    Chakraborty, Gouri Shankar
    Batra, Salil
    Singh, Aman
    Muhammad, Ghulam
    Torres, Vanessa Yelamos
    Mahajan, Makul
    DIAGNOSTICS, 2023, 13 (10)
  • [46] Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection
    Jin, Suya
    Liu, Guiyan
    Bai, Qifeng
    MATHEMATICS, 2023, 11 (06)
  • [47] COVID-19 Severity Classification Using a Hierarchical Classification Deep Learning Model
    Ortiz, Sergio
    Morales, Juan Carlos
    Rojas, Fernando
    Valenzuela, Olga
    Herrera, Luis Javier
    Rojas, Ignacio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT I, 2022, : 442 - 452
  • [48] Deep Learning for COVID-19 Diagnosis via Chest Images
    Wang, Shuihua
    Zhang, Yudong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 129 - 132
  • [49] A Study and Analysis of COVID-19 Diagnosis and Approach of Deep Learning
    Begum, R. Mangai
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (09): : 149 - 158
  • [50] Deep Learning in Image Analysis for COVID-19 Diagnosis: a Survey
    de Sousa, Orrana L., V
    Magalhaes, Deborah M., V
    Vieira, Pablo de A.
    Silva, Romuere R. V. E.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (06) : 925 - 936