Pure strategy equilibria in symmetric two-player zero-sum games

被引:36
|
作者
Duersch, Peter [2 ]
Oechssler, Joerg [2 ]
Schipper, Burkhard C. [1 ]
机构
[1] Univ Calif Davis, Dept Econ, Davis, CA 95616 USA
[2] Heidelberg Univ, Dept Econ, Heidelberg, Germany
基金
美国国家科学基金会;
关键词
Symmetric two-player games; Zero-sum games; Rock-paper-scissors; Single-peakedness; Quasiconcavity; Finite population evolutionary stable strategy; Saddle point; Exact potential games; EVOLUTIONARY STABILITY; FINITE POPULATION;
D O I
10.1007/s00182-011-0302-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We observe that a symmetric two-player zero-sum game has a pure strategy equilibrium if and only if it is not a generalized rock-paper-scissors matrix. Moreover, we show that every finite symmetric quasiconcave two-player zero-sum game has a pure equilibrium. Further sufficient conditions for existence are provided. Our findings extend to general two-player zero-sum games using the symmetrization of zero-sum games due to von Neumann. We point out that the class of symmetric two-player zero-sum games coincides with the class of relative payoff games associated with symmetric two-player games. This allows us to derive results on the existence of finite population evolutionary stable strategies.
引用
收藏
页码:553 / 564
页数:12
相关论文
共 50 条
  • [41] Symmetric zero-sum games with only asymmetric equilibria
    Xefteris, Dimitrios
    GAMES AND ECONOMIC BEHAVIOR, 2015, 89 : 122 - 125
  • [42] A Generalized Minimax Q-Learning Algorithm for Two-Player Zero-Sum Stochastic Games
    Diddigi, Raghuram Bharadwaj
    Kamanchi, Chandramouli
    Bhatnagar, Shalabh
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4816 - 4823
  • [43] Algorithms for uniform optimal strategies in two-player zero-sum stochastic games with perfect information
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Maggi, Lorenzo
    OPERATIONS RESEARCH LETTERS, 2012, 40 (01) : 56 - 60
  • [44] On the Use of Non-Stationary Strategies for Solving Two-Player Zero-Sum Markov Games
    Perolat, Julien
    Piot, Bilal
    Scherrer, Bruno
    Pietquin, Olivier
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 893 - 901
  • [45] Online Solution of Nonlinear Two-Player Zero-Sum Games Using Synchronous Policy Iteration
    Vamvoudakis, Kyriakos G.
    Lewis, F. L.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 3040 - 3047
  • [46] The Lagging Anchor Algorithm: Reinforcement Learning in Two-Player Zero-Sum Games with Imperfect Information
    Fredrik A. Dahl
    Machine Learning, 2002, 49 : 5 - 37
  • [47] GPI-Based design for partially unknown nonlinear two-player zero-sum games
    Yu, Lin
    Xiong, Junlin
    Xie, Min
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (03): : 2068 - 2088
  • [48] Online solution of nonlinear two-player zero-sum games using synchronous policy iteration
    Vamvoudakis, Kyriakos G.
    Lewis, F.L.
    International Journal of Robust and Nonlinear Control, 2012, 22 (13): : 1460 - 1483
  • [49] Online solution of nonlinear two-player zero-sum games using synchronous policy iteration
    Vamvoudakis, Kyriakos G.
    Lewis, F. L.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (13) : 1460 - 1483
  • [50] Policy gradient algorithm and its convergence analysis for two-player zero-sum Markov games
    Wang Z.
    Li Y.
    Feng Y.
    Feng Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (03): : 480 - 491