A numerical algorithm for finding solutions of a generalized Nash equilibrium problem

被引:7
|
作者
Matioli, Luiz Carlos [1 ]
Sosa, Wilfredo [2 ]
Yuan, Jinyun [1 ]
机构
[1] Ctr Politen, Dept Matemat, UFPR, BR-81531980 Curitiba, PR, Brazil
[2] Univ Nacl Ingn, Inst Matemat & Ciencias Afines, Lima, Peru
关键词
Convex feasibility problem; Generalized Nash equilibrium problem; Projection methods; EXISTENCE;
D O I
10.1007/s10589-011-9407-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301-316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 50 条
  • [31] Finding a simple Nash Equilibrium
    Sun, Shu-Yang
    Liu, Da-You
    Sun, Cheng-Min
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (2A): : 153 - 155
  • [32] Computing all solutions of linear generalized Nash equilibrium problems
    Axel Dreves
    Mathematical Methods of Operations Research, 2017, 85 : 207 - 221
  • [33] Finding a Nash equilibrium in spatial games is an NP-complete problem
    Baron, R
    Durieu, J
    Haller, H
    Solal, P
    ECONOMIC THEORY, 2004, 23 (02) : 445 - 454
  • [34] Finding a Nash equilibrium in spatial games is an NP-complete problem
    Richard Baron
    Jacques Durieu
    Hans Haller
    Philippe Solal
    Economic Theory, 2004, 23 : 445 - 454 (2004)
  • [35] Distributed Adaptive Generalized Nash Equilibrium Algorithm for Aggregative Games
    Shi X.-S.
    Ren L.
    Sun C.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (06): : 1210 - 1220
  • [37] A New Iterative Method for Finding Common Solutions of Generalized Equilibrium Problem and Fixed Point Problem in Hilbert Spaces
    Min LIUShi Sheng ZHANG Department of MathematicsYibin UniversitySichuan PRChina
    数学研究与评论, 2010, 30 (06) : 1061 - 1070
  • [38] Analysis and Numerical Solution of a Modular Convex Nash Equilibrium Problem
    Bui, Minh N.
    Combettes, Patrick L.
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (04) : 1007 - 1021
  • [39] A computational approach to dynamic generalized Nash equilibrium problem with time delay
    Wang, Xing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [40] SC1 optimization reformulations of the generalized Nash equilibrium problem
    von Heusinger, Anna
    Kanzow, Christian
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (06): : 953 - 973