CONSTRUCTION OF NONLINEAR WEIGHTED METHOD FOR FINITE VOLUME SCHEMES PRESERVING MAXIMUM PRINCIPLE

被引:25
|
作者
Sheng, Zhiqiang [1 ]
Yuan, Guangwei [1 ]
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 01期
基金
中国国家自然科学基金;
关键词
maximum principle; finite volume scheme; nonlinear weighted method; diffusion equation; DIFFUSION-EQUATIONS; POLYGONAL MESHES; ANISOTROPIC DIFFUSION; ELEMENT APPROXIMATIONS; GENERAL MESHES; POSITIVITY; MONOTONICITY; OPERATORS; ACCURACY; STENCIL;
D O I
10.1137/16M1098000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the construction of finite volume schemes preserving maximum principle for diffusion equations on distorted meshes, the nonlinear weighted method has become a commonly used approach. In this paper we present three finite volume schemes preserving maximum principle based on nonlinear weighted methods, in which a conservative flux is constructed by using three kinds of weighted combination of nonconservative flux. We perform an elementary analysis to compare the errors of flux for these weighted methods, which shows that Scheme 3 is the best of the three schemes. Moreover, we propose a general approach to construct the nonlinear weighted method. Numerical results are presented to demonstrate the accuracy and properties of these schemes.
引用
收藏
页码:A607 / A628
页数:22
相关论文
共 50 条
  • [31] ON THE MAXIMUM PRINCIPLE PRESERVING SCHEMES FOR THE GENERALIZED ALLEN-CAHN EQUATION
    Shen, Jie
    Tang, Tao
    Yang, Jiang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (06) : 1517 - 1534
  • [32] Mesh Conditions of the Preserving-Maximum-Principle Linear Finite Volume Element Method for Anisotropic Diffusion-Convection-Reaction Equations
    Lin, Lei
    Lv, Jun-liang
    Yue, Jing-yan
    Yuan, Guang-wei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (03): : 707 - 732
  • [33] Mesh Conditions of the Preserving-Maximum-Principle Linear Finite Volume Element Method for Anisotropic Diffusion-Convection-Reaction Equations
    Lei LIN
    Jun-liang LV
    Jing-yan YUE
    Guang-wei YUAN
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 707 - 732
  • [34] Mesh Conditions of the Preserving-Maximum-Principle Linear Finite Volume Element Method for Anisotropic Diffusion-Convection-Reaction Equations
    Lei Lin
    Jun-liang Lv
    Jing-yan Yue
    Guang-wei Yuan
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 707 - 732
  • [35] FINITE VOLUME MAXIMUM PRINCIPLE FOR HYPERBOLIC SCALAR PROBLEMS
    Clain, Stephane
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 467 - 490
  • [36] A nonlinear correction and maximum principle for diffusion operators with hybrid schemes
    Le Potier, Christophe
    Mahamane, Amadou
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 101 - 106
  • [37] A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows
    Xiong, Tao
    Qiu, Jing-Mei
    Xu, Zhengfu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 : 310 - 331
  • [38] PARAMETRIZED MAXIMUM PRINCIPLE PRESERVING LIMITER FOR FINITE DIFFERENCE WENO SCHEMES SOLVING CONVECTION-DOMINATED DIFFUSION EQUATIONS
    Jiang, Yi
    Xu, Zhengfu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2524 - A2553
  • [39] Development and analysis of moments preserving finite volume schemes for multi-variate nonlinear breakage model
    Das, Ashok
    Paul, Jayanta
    Heinrich, Stefan
    Kumar, Jitendra
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2271):
  • [40] VORTICITY PRESERVING FINITE VOLUME SCHEMES FOR THE SHALLOW WATER EQUATIONS
    Fjordholm, Ulrik S.
    Mishra, Siddhartha
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 588 - 611