The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development

被引:40
|
作者
Denny, Joshua C. [1 ,2 ]
Van Driest, Sara L. [2 ,3 ]
Wei, Wei-Qi [1 ]
Roden, Dan M. [1 ,2 ,4 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA
[3] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Med Ctr, Dept Pharmacol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
PHENOME-WIDE ASSOCIATION; HEALTH; CANCER; IMPLEMENTATION; RECORDS; RISK; CLASSIFICATION; VARIANTS; GENOTYPE; BIOBANK;
D O I
10.1002/cpt.951
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Drug development continues to be costly and slow, with medications failing due to lack of efficacy or presence of toxicity. The promise of pharmacogenomic discovery includes tailoring therapeutics based on an individual's geneticmakeup, rational drug development, and repurposing medications. Rapid growth of large research cohorts, linked to electronic health record (EHR) data, fuels discovery of new genetic variants predicting drug action, supports Mendelian randomization experiments to show drug efficacy, and suggests new indications for existingmedications. New biomedical informatics and machine-learning approaches advance the ability to interpret clinical information, enabling identification of complex phenotypes and subpopulations of patients. We review the recent history of use of "big data" from EHR-based cohorts and biobanks supporting these activities. Future studies using EHR data, other information sources, and new methods will promote a foundation for discovery to more rapidly advance precisionmedicine.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 50 条
  • [31] Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery
    Nayarisseri, Anuraj
    Khandelwal, Ravina
    Tanwar, Poonam
    Madhavi, Maddala
    Sharma, Diksha
    Thakur, Garima
    Speck-Planche, Alejandro
    Singh, Sanjeev Kumar
    CURRENT DRUG TARGETS, 2021, 22 (06) : 631 - 655
  • [32] Impact of genomics on drug discovery and clinical medicine
    Emilien, G
    Ponchon, M
    Caldas, C
    Isacson, O
    Maloteaux, JM
    QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2000, 93 (07) : 391 - 423
  • [33] Drug development in the era of precision medicine
    Dugger, Sarah A.
    Platt, Adam
    Goldstein, David B.
    NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (03) : 183 - 196
  • [34] Drug development in the era of precision medicine
    Sarah A. Dugger
    Adam Platt
    David B. Goldstein
    Nature Reviews Drug Discovery, 2018, 17 : 183 - 196
  • [35] Big data and precision medicine: challenges and strategies with healthcare data
    Kraus J.M.
    Lausser L.
    Kuhn P.
    Jobst F.
    Bock M.
    Halanke C.
    Hummel M.
    Heuschmann P.
    Kestler H.A.
    International Journal of Data Science and Analytics, 2018, 6 (3) : 241 - 249
  • [36] Real world big data for clinical research and drug development
    Singh, Gurparkash
    Schulthess, Duane
    Hughes, Nigel
    Vannieuwenhuyse, Bart
    Kalra, Dipak
    DRUG DISCOVERY TODAY, 2018, 23 (03) : 652 - 660
  • [37] Clinical trial design: Past, present, and future in the context of big data and precision medicine
    Li, Allen
    Bergan, Raymond C.
    CANCER, 2020, 126 (22) : 4838 - 4846
  • [38] How Will Big Data Impact Clinical Decision Making and Precision Medicine in Radiation Therapy?
    Chen, Ronald C.
    Gabriel, Peter E.
    Kavanagh, Brian D.
    McNutt, Todd R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 95 (03): : 880 - 884
  • [39] Big Data for a Big Problem: Precision Medicine of Stroke in Neurocritical Care*
    Liebeskind, David S.
    CRITICAL CARE MEDICINE, 2018, 46 (07) : 1189 - 1191
  • [40] Precision Medicine and Big Data: The Application of an Ethics Framework for Big Data in Health and Research
    Schaefer, G. Owen
    Tai, E. Shyong
    Sun, Shirley
    ASIAN BIOETHICS REVIEW, 2019, 11 (03) : 275 - 288