On Opial-type inequality for a generalized fractional integral operator

被引:2
|
作者
Vivas-Cortez, Miguel [1 ]
Martinez, Francisco [2 ]
Napoles Valdes, Juan E. [3 ]
Hernandez, Jorge E. [4 ]
机构
[1] Pontificia Univ Catolica Ecuador, Fac Ciencias Nat & Exactas, Escuela Ciencias Fis & Matemat, Av 12 Octubre 1076 Apartado, Quito 17012184, Ecuador
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[3] Univ Nacl Nordeste, Fac Ciencias Exactas & Nat & Agrimensura, Corrientes, Argentina
[4] Univ Centroccident Lisandro Alvarado, Dept Tecn Cuantitat, Decanato Ciencias Econom & Empresariales, Barquisimeto, Venezuela
关键词
Opial inequality; fractional integral operator; fractional calculus;
D O I
10.1515/dema-2022-0149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type special function, and with certain results proposed in previous publications and the choice of the parameters involved, the established results in the work are obtained. In addition, some criteria are established to obtain the aforementioned inequalities based on other integral operators. Finally, a more generalized definition is suggested, with which interesting results can be obtained in the field of fractional integral inequalities.
引用
收藏
页码:695 / 709
页数:15
相关论文
共 50 条
  • [41] Opial-type inequalities for differential operators
    Cheung, Wing-Sum
    Zhao Dandan
    Pecaric, Josip
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) : 2028 - 2039
  • [42] Opial-Type Inequalities for Superquadratic Functions
    Farid, Ghulam
    Bibi, Ayesha
    Nazeer, Waqas
    FILOMAT, 2022, 36 (01) : 89 - 98
  • [43] On q-Opial Type Inequality for Quantum Integral
    Alp, Necmettin
    Bilisik, Candan Can
    Sarikaya, Mehmet Zeki
    FILOMAT, 2019, 33 (13) : 4175 - 4184
  • [44] Opial integral inequalities for generalized fractional operators with nonsingular kernel
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [45] Opial integral inequalities for generalized fractional operators with nonsingular kernel
    Pshtiwan Othman Mohammed
    Thabet Abdeljawad
    Journal of Inequalities and Applications, 2020
  • [46] Gronwall type inequality on generalized fractional conformable integral operators
    Palsaniya, Vandana
    Mittal, Ekta
    Joshi, Sunil
    Suthar, D. L.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (03): : 147 - 162
  • [47] Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator
    Gao, Tingmei
    Farid, Ghulam
    Ahmad, Ayyaz
    Luangboon, Waewta
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [48] Some Opial-Type Inequalities on Time Scales
    Saker, S. H.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [49] Reduction of Opial-type inequalities to norm inequalities
    Sinnamon, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 375 - 379
  • [50] A GRUSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR
    Choi, Junesang
    Purohit, Sunil Dutt
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (02): : 81 - 92