Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number

被引:28
|
作者
Gan, Yanbiao [1 ,2 ,3 ]
Xu, Aiguo [1 ]
Zhang, Guangcai [1 ]
Zhang, Ping [1 ]
Li, Yingjun [3 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[2] N China Inst Aerosp Engn, Langfang 065000, Peoples R China
[3] China Univ Min & Technol Beijing, State Key Lab GeoMech & Deep Underground Engn, SMCE, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL; SIMULATION; FLOWS;
D O I
10.1209/0295-5075/97/44002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of heat conduction, viscosity, and Prandtl number on thermal liquid-vapor separation via a lattice Boltzmann model for van der Waals fluids. The set of Minkowski measures on the density field enables to divide exactly the stages of the spinodal decomposition (SD) and domain growth. The duration t(SD) of the SD stage decreases with increasing the heat conductivity kappa(T) but increases with increasing the viscosity eta. The two relations can be fitted by t(SD) = a+ b/kappa(T) and t(SD) = c+ d eta +(e eta)(3), respectively, where a, b, c, d and e are fitting parameters. For fixed Prandtl number Pr, when eta is less than a critical value eta(c), t(SD) shows an inverse power-law relationship with eta. However, when eta > eta(c), t(SD) for Pr > 1 shows qualitatively different behavior. From the evolution of the Peclet number Pe, the separation procedure can also be divided into two stages. During the first stage, the convection effects become more dominant with time over those of the diffusivity, while they are reverse in the second stage. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Lattice Boltzmann simulation of non-Fourier heat conduction with phase change
    Liu, Yi
    Li, Ling
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 76 (01) : 19 - 31
  • [22] Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method
    Wang, Heping
    Zang, Duyang
    Li, Xiaoguang
    Geng, Xingguo
    EUROPEAN PHYSICAL JOURNAL E, 2017, 40 (12):
  • [23] Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method
    Heping Wang
    Duyang Zang
    Xiaoguang Li
    Xingguo Geng
    The European Physical Journal E, 2017, 40
  • [24] Numerical study of Prandtl number effects in turbulent thermal convection
    Bao Yun
    Gao Zhen-Yuan
    Ye Meng-Xiang
    ACTA PHYSICA SINICA, 2018, 67 (01)
  • [25] Lattice Boltzmann scheme for hyperbolic heat conduction equation
    Ho, JR
    Kuo, CP
    Jiaung, WS
    Twu, CJ
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2002, 41 (06) : 591 - 607
  • [26] Lattice Boltzmann Shakhov kinetic models for variable Prandtl number on Cartesian lattices
    Ilyin, Oleg
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [27] Lattice Boltzmann method for simulation of weakly compressible flows at arbitrary Prandtl number
    Praslanakis, N. I.
    Boulouchos, K. B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 602 - 609
  • [28] Lattice Boltzmann simulation for phase separation with chemical reaction controlled by thermal diffusion
    Wang, Heping
    Zhang, Xiaohang
    Che, Jinxing
    Zhang, Yuhua
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (10):
  • [29] Lattice Boltzmann simulation for phase separation with chemical reaction controlled by thermal diffusion
    Heping Wang
    Xiaohang Zhang
    Jinxing Che
    Yuhua Zhang
    The European Physical Journal E, 2021, 44
  • [30] Effects of bulk viscosity, heat capacity ratio, and Prandtl number on the dispersion relationship of compressible flows
    Bhaumik, Swagata
    Deepak, Sawant Omkar
    PHYSICS OF FLUIDS, 2023, 35 (11)