Symmetric Polynomials in the Free Metabelian Lie Algebras

被引:10
|
作者
Drensky, Vesselin [1 ]
Findik, Sehmus [2 ]
Oguslu, Nazar Sahin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[2] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
Free metabelian Lie algebras; symmetric polynomials; FIXED-POINTS;
D O I
10.1007/s00009-020-01582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K[X-n] be the commutative polynomial algebra in the variables X-n = {x(1), ... , x(n)} over a field K of characteristic zero. A theorem from undergraduate course of algebra states that the algebra K[X-n](Sn) of symmetric polynomials is generated by the elementary symmetric polynomials which are algebraically independent over K. In the present paper, we study a noncommutative and nonassociative analogue of the algebra K[X-n](Sn) replacing K[X-n] with the free metabelian Lie algebra F-n of rank n >= 2 over K. It is known that the algebra F-n(Sn) is not finitely generated, but its ideal (F'(n))(Sn) consisting of the elements of F-n(Sn) in the commutator ideal F'(n) of F-n is a finitely generated K[X-n](Sn)-module. In our main result, we describe the generators of the K[X-n](Sn)-module (F'(n))(Sn) which gives the complete description of the algebra F-n(Sn).
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Determination of endomorphisms of free metabelian Lie algebras
    Chirkov, IV
    Shevelin, MA
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (06) : 1205 - 1207
  • [12] Determination of Endomorphisms of Free Metabelian Lie Algebras
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2000, 41 : 1205 - 1207
  • [13] Weitzenbock derivations of free metabelian Lie algebras
    Dangovski, Rumen
    Drensky, Vesselin
    Findik, Sehmus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3279 - 3296
  • [14] Classical Invariant Theory for Free Metabelian Lie Algebras
    Drensky, Vesselin
    Findik, Sehmus
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 1071 - 1092
  • [15] ON AUTOMORPHISMS OF FREE CENTER-BY-METABELIAN LIE ALGEBRAS
    Kofinas, C. E.
    Papistas, A. I.
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 625 - 643
  • [16] Ideals of Free Metabelian Lie Algebras and Primitive Elements
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2001, 42 : 610 - 612
  • [17] Ideals of free metabelian Lie algebras and primitive elements
    Chirkov, IV
    Shevelin, MA
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (03) : 610 - 612
  • [18] Semidomains and metabelian product of metabelian lie algebras
    Daniyarova E.Yu.
    Kazatchkov I.V.
    Remeslennikov V.N.
    Journal of Mathematical Sciences, 2005, 131 (6) : 6015 - 6022
  • [19] Restricted enveloping algebras whose skew and symmetric elements are Lie metabelian
    Siciliano, Salvatore
    Usefi, Hamid
    FORUM MATHEMATICUM, 2016, 28 (04) : 807 - 812
  • [20] Regular metabelian Lie algebras
    Levstein, F
    Tiraboschi, A
    GEOMETRY AND REPRESENTATION THEORY OF REAL AND P-ADIC GROUPS, 1998, 158 : 197 - 207