Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data

被引:27
|
作者
Bueso, Diego [1 ]
Piles, Maria [1 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
来源
基金
欧洲研究理事会;
关键词
El Nino Southern Oscillation (ENSO); feature extraction; gross primary productivity (GPP); kernel methods; principal component analysis (PCA); sea surface temperature (SST); soil moisture (SM); SM and ocean salinity (SMOS); spatiotemporal data; PRINCIPAL COMPONENT ANALYSIS; CARBON-DIOXIDE; ENSO; TELECONNECTIONS; PATTERNS; ROTATION; ROBUST;
D O I
10.1109/TGRS.2020.2969813
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing observations, products, and simulations are fundamental sources of information to monitor our planet and its climate variability. Uncovering the main modes of spatial and temporal variability in Earth data is essential to analyze and understand the underlying physical dynamics and processes driving the Earth System. Dimensionality reduction methods can work with spatio-temporal data sets and decompose the information efficiently. Principal component analysis (PCA), also known as empirical orthogonal functions (EOFs) in geophysics, has been traditionally used to analyze climatic data. However, when nonlinear feature relations are present, PCA/EOF fails. In this article, we propose a nonlinear PCA method to deal with spatio-temporal Earth system data. The proposed method, called rotated complex kernel PCA (ROCK-PCA for short), works in reproducing kernel Hilbert spaces to account for nonlinear processes, operates in the complex kernel domain to account for both space and time features, and adds an extra rotation for improved flexibility. The result is an explicitly resolved spatio-temporal decomposition of the Earth data cube. The method is unsupervised and computationally very efficient. We illustrate its ability to uncover spatio-temporal patterns using synthetic experiments and real data. Results of the decomposition of three essential climate variables are shown: satellite-based global gross primary productivity (GPP), soil moisture (SM), and reanalysis sea surface temperature (SST) data. The ROCK-PCA method allows identifying their annual and seasonal oscillations, as well as their nonseasonal trends and spatial variability patterns. The main modes of variability of GPP and SM match expected distributions of land-cover and eco-hydrological zones, respectively; the interannual component of SM is shown to be highly correlated with El Nino Southern Oscillation (ENSO) phenomenon; and the SST annual oscillation is perfectly uncoupled in magnitude and phase from the global warming trend and ENSO anomalies, as well as from their mutual interactions. We provide the working source code of the presented method for the interested reader in https://github.com/DiegoBueso/ROCK-PCA.
引用
收藏
页码:5752 / 5763
页数:12
相关论文
共 50 条
  • [21] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [22] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [23] Spatio-Temporal Analysis of Land Subsidence in Beijing Plain Based on InSAR and PCA
    He Xu
    He Yi
    Zhang Li-feng
    Chen Yi
    Pu Hong-yu
    Chen Bao-shan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (07) : 2315 - 2324
  • [24] Nonlinear spatio-temporal dynamics in semiconductors
    Schöll, E
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (04) : 627 - 638
  • [25] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334
  • [26] Effective spatio-temporal analysis of remote sensing data
    Zhang, Zhongnan
    Wu, Weili
    Huang, Yaochun
    PROGRESS IN WWW RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2008, 4976 : 584 - 589
  • [27] A new covariance function for spatio-temporal data analysis
    Rao, Tata Subba
    Terdik, Gyorgy
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 64 - 66
  • [28] Spatio-temporal analysis of Salmonella surveillance data in Thailand
    Domingues, A. R.
    Vieira, A. R.
    Hendriksen, R. S.
    Pulsrikarn, C.
    Aarestrup, F. M.
    EPIDEMIOLOGY AND INFECTION, 2014, 142 (08): : 1614 - 1624
  • [29] A tool for mapping and spatio-temporal analysis of hydrological data
    Guzman, J. A.
    Moriasi, D. N.
    Chu, M. L.
    Starks, P. J.
    Steiner, J. L.
    Gowda, P. H.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 48 : 163 - 170
  • [30] Spatio-Temporal Analysis of Large Air Pollution Data
    Bin Tarek, Mirza Farhan
    Asaduzzaman, Md
    Patwary, Mohammad
    2018 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2018, : 221 - 224