On the decomposition numbers, of the Hecke algebra of type Dn when n is even

被引:4
|
作者
Hu, Jun [1 ]
机构
[1] Beijing Inst Technol, Sch Sci, Dept Appl Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Iwahori-Hecke algebra; q-Schur algebra; Dual Specht modules; SIMPLE MODULES; CRYSTAL BASES; REPRESENTATIONS; ROOTS;
D O I
10.1016/j.jalgebra.2008.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 4 be ail even integer. Let K be a field with char K not equal 2 and q an invertible element in K such that Pi(n-1)(i=1) (1 + q(i)) not equal 0. In this paper, we study the decomposition numbers over K of the Iwahori-Hecke algebra H-q(D-n) of type D-n We obtain some equalities which relate its decomposition numbers with certain Schur elements and the decomposition numbers of various Iwahori-Hecke algebras of type A with the same parameter q. When char K = 0, this completely determine all of its decomposition numbers. The main tools we used are the Morita equivalence theorem established in [J. Hu. A Morita equivalence theorem for Hecke algebra H-q(D-n) when n is even, Manuscripta Math. 108 (2002) 409-430] and certain twining character formulae of Weyl modules over a tensor product of two q-Schur algebras. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1016 / 1038
页数:23
相关论文
共 50 条