A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold

被引:2
|
作者
Shahin-Shamsabadi, Alireza [1 ]
Hashemi, Ata [1 ]
Tahriri, Mohammadreza [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, POB 15875-4413, Tehran, Iran
[2] Marquette Univ, Sch Dent, Dept Dev Sci, Milwaukee, WI 53233 USA
[3] Univ Tehran Med Sci, Sch Dent, Dent Biomat Dept, POB 14155-6447, Tehran, Iran
关键词
Bone scaffold; Poly(epsilon-caprolactone); Microsphere sintering; Viscoelastic behavior; BIOMEDICAL APPLICATIONS; IN-VITRO; BIODEGRADABLE POLYMERS; STRESS-RELAXATION; PROTEIN RELEASE; COMPACT-BONE; POLYCAPROLACTONE; BEHAVIOR; REPAIR; BIOMATERIALS;
D O I
10.1007/s40846-017-0325-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering scaffolds are intended as a replacement for conventional bone grafts used in the treatment of bone damages. One of the challenges in bone tissue engineering is to fabricate scaffolds with large pores, high porosity, and at the mean time proper mechanical properties suitable for bone applications. The elastic properties Young's modulus and yield strength) of these scaffolds have been mostly considered but since bone is a viscoelastic material it is necessary to evaluate this behavior of the scaffolds as well. In the current study the novel method of microsphere sintering as a bottom-up approach was used to fabricate porous three dimensional (3D) bone scaffolds made of poly(epsilon-caprolactone) with controlled properties. Different variables effective on the mechanical and architectural properties of the scaffold (including time and temperature of the sintering process) were investigated and the optimum conditions (100 min and 64.5 degrees C) to fabricate scaffolds with the highest possible mechanical properties and porosity were determined (Young's modulus = 33.61 MPa, yield strength = 2.2 MPa, with 44.5% porosity). Then the viscoelastic properties of this scaffold was evaluated and studied using stress relaxation test (25% stress relaxation) and generalized Maxwell model and compared to bone. Based on these results, the highly inter--onnected scaffold showed proper mechanical properties, pore size and structure proper for bone tissue engineering.
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [21] Poly(Caprolactone)/Chitosan-based Scaffold using Freeze Drying Technique for Bone Tissue Engineering Application
    Chong, Lor Huai
    Zarith, Nadira Zamal
    Sultana, Naznin
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [22] Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold
    Das, Pritam
    Remigy, Jean-Christophe
    Lahitte, Jean-Francois
    van der Meer, Andries D.
    Garmy-Susini, Barbara
    Coetsier, Clemence
    Desclaux, Sandrine
    Bacchin, Patrice
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 107
  • [23] Poly-ε-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus
    Diemer, P.
    Markoew, S.
    Le, D. Q. S.
    Qvist, N.
    DISEASES OF THE ESOPHAGUS, 2015, 28 (03) : 240 - 245
  • [24] Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering
    Lee, SH
    Kim, BS
    Kim, SH
    Choi, SW
    Jeong, SI
    Kwon, IK
    Kang, SW
    Nikolovski, J
    Mooney, DJ
    Han, YK
    Kim, YH
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (01) : 29 - 37
  • [25] VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering
    Jabbarzadeh, Ehsan
    Deng, Meng
    Lv, Qing
    Jiang, Tao
    Khan, Yusuf M.
    Nair, Lakshmi S.
    Laurencin, Cato T.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (08) : 2187 - 2196
  • [26] In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering
    Jiang, Tao
    Abdel-Fattah, Wafa I.
    Laurencin, Cato T.
    BIOMATERIALS, 2006, 27 (28) : 4894 - 4903
  • [27] Poly(lactide-co-glycolide)/titania Composite Microsphere-Sintered Scaffolds for Bone Tissue Engineering Applications
    Wang, Yingjun
    Shi, Xuetao
    Ren, Li
    Yao, Yongchang
    Zhang, Feng
    Wang, Dong-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2010, 93B (01) : 84 - 92
  • [28] Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation
    Baptista-Perianes, Amalia
    Simbara, Marcia Mayumi Omi
    Malmonge, Sonia Maria
    da Cunha, Marcelo Rodrigues
    Buchaim, Daniela Vieira
    Miglino, Maria Angelica
    Kassis, Elias Naim
    Buchaim, Rogerio Leone
    Santos Jr, Arnaldo Rodrigues
    POLYMERS, 2024, 16 (21)
  • [29] Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering
    Boissard, C. I. R.
    Bourban, P. -E.
    Tami, A. E.
    Alini, M.
    Eglin, D.
    ACTA BIOMATERIALIA, 2009, 5 (09) : 3316 - 3327
  • [30] ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering
    FotouhiArdakani, Faegheh
    Mohammadi, Mohammad
    Mashayekhan, Shohreh
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (08):