Physicochemical Strategies for Inhibition of Amyloid Fibril Formation: An Overview of Recent Advances

被引:39
|
作者
Liu, R. [1 ,2 ]
Su, R. [1 ]
Liang, M. [1 ]
Huang, R. [3 ]
Wang, M. [1 ]
Qi, W. [1 ,2 ]
He, Z. [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Membrane Sci & Desalinat Technol, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China
关键词
Amyloid inhibition; amyloid-related disease; protein aggregation; assembly; fibril; hydrostatic pressure; laser irradiation; metal chelator; nanomaterial; biomolecule; peptide; protein; nucleic acid; saccharide; polyphenols; ALPHA-B-CRYSTALLIN; RECOMBINANT THERAPEUTIC PROTEINS; PRION-PROTEIN; BETA-PEPTIDE; IN-VITRO; RNA APTAMERS; STRUCTURAL DETERMINANTS; HYDROSTATIC-PRESSURE; W7FW14F APOMYOGLOBIN; INSULIN AGGREGATION;
D O I
10.2174/092986712802430018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein aggregation and amyloid fibrillation can lead to several serious human diseases and protein drug ineffectiveness. The complexity and dynamics of protein folding present unique challenges for elucidating the molecular mechanisms involved in protein aggregation and designing effective amyloid inhibitors. Continuous development of creative approaches to identify an ultimate solution for controlling protein aggregation in biopharmaceuticals and clinical pathology is clearly required. This review describes and discusses the most recent advances on the physicochemical strategies for inhibiting protein aggregation and amyloid fibrillation, with emphasis on giving a brief overview of creative approaches and chemistries used. Physical strategies for inhibiting amyloid fibril formation, including high hydrostatic pressure, low temperature, and laser irradiation, are critically evaluated. Recent advances in chemical strategies including small molecules, metal chelators, and nanomaterials, as well as in the use of biomolecules (peptide, protein, nucleic acid, and saccharide) as amyloid inhibitors, are also highlighted.
引用
收藏
页码:4157 / 4174
页数:18
相关论文
共 50 条
  • [31] Inhibition of β2-Microglobulin Amyloid Fibril Formation by α2-Macroglobulin
    Ozawa, Daisaku
    Hasegawa, Kazuhiro
    Lee, Young-Ho
    Sakurai, Kazumasa
    Yanagi, Kotaro
    Ookoshi, Tadakazu
    Goto, Yuji
    Naiki, Hironobu
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (11) : 9668 - 9676
  • [32] Inhibition of amyloid fibril formation of lysozyme by ascorbic acid and a probable mechanism of action
    Patel, Palak
    Parmar, Krupali
    Patel, Dhaval
    Kumar, Suresh
    Trivedi, Manan
    Das, Mill
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 114 : 666 - 678
  • [33] Neprilysin Impedes Islet Amyloid Formation by Inhibition of Fibril Formation Rather Than Peptide Degradation
    Zraika, Sakeneh
    Aston-Mourney, Kathryn
    Marek, Peter
    Hull, Rebecca L.
    Green, Pattie S.
    Udayasankar, Jayalakshmi
    Subramanian, Shoba L.
    Raleigh, Daniel P.
    Kahn, Steven E.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (24) : 18177 - 18183
  • [34] On the lag phase in amyloid fibril formation
    Arosio, Paolo
    Knowles, Tuomas P. J.
    Linse, Sara
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) : 7606 - 7618
  • [35] Apolipoproteins and amyloid fibril formation in atherosclerosis
    Chai Lean Teoh
    Michael D.W.Griffin
    Geoffrey J.Howlett
    Protein & Cell, 2011, 2 (02) : 116 - 127
  • [36] Amyloid fibril formation is suppressed in microgravity
    Matsushita, Hiroaki
    Isoguchi, Aito
    Okada, Masamitsu
    Masuda, Teruaki
    Misumi, Yohei
    Ichiki, Yuko
    Ueda, Mitsuharu
    Ando, Yukio
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2021, 25
  • [37] Mechanisms of amyloid fibril formation by proteins
    Kumar, Santosh
    Udgaonkar, Jayant B.
    CURRENT SCIENCE, 2010, 98 (05): : 639 - 656
  • [38] Effect of Surfaces on Amyloid Fibril Formation
    Moores, Bradley
    Drolle, Elizabeth
    Attwood, Simon J.
    Simons, Janet
    Leonenko, Zoya
    PLOS ONE, 2011, 6 (10):
  • [39] Elucidating the kinetics of β-amyloid fibril formation
    Edwin, NJ
    Bantchev, GB
    Russo, PS
    Hammer, RP
    McCarley, RL
    NEW POLYMERIC MATERIALS, 2005, 916 : 106 - 118
  • [40] Pathways and intermediates of amyloid fibril formation
    Pellarin, Riccardo
    Guarnera, Enrico
    Caflisch, Amedeo
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 374 (04) : 917 - 924