The indecomposable tournaments T with |W5(T)| = |T|-2

被引:1
|
作者
Belkhechine, Houmem [1 ]
Boudabbous, Imed [2 ]
Hzami, Kaouthar [3 ]
机构
[1] Carthage Univ, Bizerte Preparatory Engn, Tunis, Tunisia
[2] Sfax Univ, Sfax, Tunisia
[3] Gabes Univ, Higher Inst Comp Sci & Multimedia Gabes, Gabes, Tunisia
关键词
D O I
10.1016/j.crma.2013.07.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a tournament T = (V, A). For X subset of V, the subtournament of T induced by X is T [X] = (X, A boolean AND (X x X)). An interval of T is a subset X of V such that, for a, b is an element of X and x is an element of V \ X, (a, x) is an element of A if and only if (b, x) is an element of A. The trivial intervals of T are empty set, {x} (x is an element of V) and V. A tournament is indecomposable if all its intervals are trivial. For n >= 2, W2n+1 denotes the unique indecomposable tournament defined on {0, ... , 2n} such that W2n+1[{0, ... , 2n - 1}] is the usual total order. Given an indecomposable tournament T, W-5(T) denotes the set of v is an element of V such that there is W subset of V satisfying v is an element of W and T[W] is isomorphic to W-5. Latka [6] characterized the indecomposable tournaments T such that W-5(T) = empty set. The authors [1] proved that if W-5(T) not equal empty set, then vertical bar W-5(T)vertical bar >= vertical bar V vertical bar - 2. In this note, we characterize the indecomposable tournaments T such that vertical bar W5(T)vertical bar = vertical bar V vertical bar - 2. (c) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:501 / 504
页数:4
相关论文
共 50 条
  • [31] PHOSPHATASES IN BACTERIOPHAGE-T2, BACTERIOPHAGE-T4, AND BACTERIOPHAGE-T5
    DUKES, PP
    KOZLOFF, LM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1959, 234 (03) : 534 - 538
  • [32] T2T-YAO, T2T-SHUN, and More
    Xiao, Jingfa
    Yu, Jun
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (06) : 1081 - 1082
  • [33] ON KAROUBI THEOREM - W(A) = W(A[T])
    OJANGUREN, M
    ARCHIV DER MATHEMATIK, 1984, 43 (04) : 328 - 331
  • [34] DUSTY COMETARY GLOBULES IN W5
    Koenig, X. P.
    Allen, L. E.
    Kenyon, S. J.
    Su, K. Y. L.
    Balog, Z.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 687 (01): : L37 - L40
  • [35] White Matter Alterations in Type 1 Diabetes (T1D) as Revealed by T1w/T2w Ratio
    Bednarik, Petr
    Kubisiak, Kristine
    Svatkova, Alena
    Eberly, Lynn E.
    Moheet, Amir
    Kumar, Anjali
    Michaeli, Shalom
    Seaquist, Elizabeth R.
    Mangia, Silvia
    DIABETES, 2016, 65 : A103 - A103
  • [36] Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions
    Uddin, Md Nasir
    Figley, Teresa D.
    Marrie, Ruth Ann
    Figley, Chase R.
    NMR IN BIOMEDICINE, 2018, 31 (03)
  • [37] T1-Separable Numberings of Subdirectly Indecomposable Algebras
    Kasymov, N. Kh
    Morozov, A. S.
    Khodzhamuratova, I. A.
    ALGEBRA AND LOGIC, 2021, 60 (04) : 263 - 278
  • [38] Top polarisation studies in H−t and W t production
    R. M. Godbole
    L. Hartgring
    I. Niessen
    C. D. White
    Journal of High Energy Physics, 2012
  • [39] Magnetic resonance T1w/T2w ratio: A parsimonious marker for Parkinson disease
    Du, Guangwei
    Lewis, Mechelle M.
    Sica, Christopher
    Kong, Lan
    Huang, Xuemei
    ANNALS OF NEUROLOGY, 2019, 85 (01) : 96 - 104
  • [40] Empirical transmit field bias correction of T1w/T2w myelin maps
    Glasser, Matthew F.
    Coalson, Timothy S.
    Harms, Michael P.
    Xu, Junqian
    Baum, Graham L.
    Autio, Joonas A.
    Auerbach, Edward J.
    Greve, Douglas N.
    Yacoub, Essa
    Essen, David C. Van
    Bock, Nicholas A.
    Hayashi, Takuya
    NEUROIMAGE, 2022, 258