Causes and consequences of spatial heterogeneity in ecosystem function

被引:49
|
作者
Turner, MG [1 ]
Chapin, FS [1 ]
机构
[1] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA
关键词
D O I
10.1007/0-387-24091-8_2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. Point processes represent rates measured at a particular location; lateral transfers are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
引用
收藏
页码:9 / 30
页数:22
相关论文
共 50 条
  • [31] Introduction to: Individual heterogeneity - the causes and consequences of a fundamental biological process
    Hamel, Sandra
    Gaillard, Jean-Michel
    Yoccoz, Nigel G.
    OIKOS, 2018, 127 (05) : 643 - 647
  • [32] Heterogeneity in Endothelial Responsiveness to Cytokines, Molecular Causes, and Pharmacological Consequences
    Molema, Grietje
    SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2010, 36 (03): : 246 - 264
  • [33] Intratumour heterogeneity of p53 expression; causes and consequences
    Xue, Yuezhen
    San Luis, Boris
    Lane, David P.
    JOURNAL OF PATHOLOGY, 2019, 249 (03): : 274 - 285
  • [34] Spatial variability in ecosystem function - Introduction
    Turner, MG
    Carpenter, SR
    ECOSYSTEMS, 1999, 2 (05) : 383 - 383
  • [35] SPATIAL HETEROGENEITY AND POPULATION STABILITY - SOME EVOLUTIONARY CONSEQUENCES
    STENSETH, NC
    OIKOS, 1980, 35 (02) : 165 - 184
  • [36] Fundamental causes and spatial heterogeneity of deforestation in Legal Amazon
    Jusys, Tomas
    APPLIED GEOGRAPHY, 2016, 75 : 188 - 199
  • [37] Anti American obsession: Function, causes and consequences
    Barrot, P
    QUINZAINE LITTERAIRE, 2002, (840): : 20 - 21
  • [38] Heterogeneity and ecosystem function: Enhancing ecological understanding and applications
    Meyer, JL
    Ecosystem Function in Heterogeneous Landscapes, 2005, : 451 - 461
  • [39] Spatial heterogeneity in ecosystem structure and productivity in a moist Kenyan savanna
    D. O. Otieno
    G. O. K’Otuto
    B. Jákli
    P. Schröttle
    J. N. Maina
    E. Jung
    J. C. Onyango
    Plant Ecology, 2011, 212 : 769 - 783
  • [40] An ecosystem in transition. Causes and consequences of the conversion of mesic grassland to shrubland
    Briggs, JM
    Knapp, AK
    Blair, JM
    Heisler, JL
    Hoch, GA
    Lett, MS
    McCarron, JK
    BIOSCIENCE, 2005, 55 (03) : 243 - 254