Calculating zeros: Non-equilibrium free energy calculations

被引:28
|
作者
Oostenbrink, C
van Gunsteren, WF [1 ]
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Phys Chem Lab, CH-8093 Zurich, Switzerland
[2] Vrije Univ Amsterdam, Fac Sci, NL-1081 HV Amsterdam, Netherlands
关键词
free energy calculations; slow-growth; fast-growth; thermodynamic integration; free energy perturbation; GROMOS; Jarzynski equation;
D O I
10.1016/j.chemphys.2005.08.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every lambda-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [41] Recovery of Equilibrium Free Energy from Non-Equilibrium Thermodynamics with Mechanosensitive Ion Channels in E-coli
    Cetiner, Ugur
    Raz, Oren
    Sukharev, Sergei
    Jarzynski, Christopher
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 114A - 114A
  • [42] A non-equilibrium superradiant phase transition in free space
    Giovanni Ferioli
    Antoine Glicenstein
    Igor Ferrier-Barbut
    Antoine Browaeys
    Nature Physics, 2023, 19 : 1345 - 1349
  • [43] A non-equilibrium superradiant phase transition in free space
    Ferioli, Giovanni
    Glicenstein, Antoine
    Ferrier-Barbut, Igor
    Browaeys, Antoine
    NATURE PHYSICS, 2023, 19 (09) : 1345 - +
  • [44] Non-equilibrium stochastic dynamics in continuum: The free case
    Kondratiev, Y.
    Lytvynov, E.
    Roeckner, M.
    CONDENSED MATTER PHYSICS, 2008, 11 (04) : 701 - 721
  • [45] Comparison of efficiency equilibrium and non-equilibrium molecular dynamics calculations of thermal diffusion factor
    Yeganegi, Saeed
    Anbarfam, Mojdeh
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (04)
  • [46] “Equilibrium”and“non-equilibrium”turbulence
    Robert Rubinstein
    Timothy T.Clark
    Theoretical & Applied Mechanics Letters, 2017, 7 (05) : 301 - 305
  • [47] EQUILIBRIUM AND NON-EQUILIBRIUM RINSING
    MOHLER, JB
    PLATING AND SURFACE FINISHING, 1979, 66 (10): : 42 - &
  • [48] Equilibrium and non-equilibrium wetting
    Nakae, H.
    Koizumi, Y.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 495 (1-2): : 113 - 118
  • [49] BCS ENERGY-GAP EQUATION IN NON-EQUILIBRIUM
    ZASADZINSKI, J
    GRAY, KE
    WILLEMSEN, HW
    HIPPS, K
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 411 - 411
  • [50] Energy space diffusion of hopping excitations in non-equilibrium
    Damker, T
    Bryksin, VV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 230 (01): : 233 - 236