Construction of non-Gaussian random fields with any given correlation structure

被引:25
|
作者
Ma, Chunsheng [1 ]
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
基金
美国国家科学基金会;
关键词
Covariance function; Elliptically contoured random field; Gaussian random field; Negative definite; Positive definite; Second-order random field; Variogram; COVARIANCE-MODELS; DISTRIBUTIONS; VARIOGRAMS; EQUATIONS; SPACE; TIME;
D O I
10.1016/j.jspi.2008.03.043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A positive definite function can be thought of as the covariance function of a Gaussian random field, according to the celebrated Kolmogorov existence theorem. A question of great theoretical and practical interest is: how could one construct a non-Gaussian random field with the given positive definite function as its covariance function? In this paper we demonstrate a novel and simple method for constructing many such non-Gaussian random fields, with the corresponding finite-dimensional distributions identified. Also, we show how to construct a non-Gaussian random field with a given negative definite function as its variogram. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 50 条
  • [31] NON-GAUSSIAN CORRELATION MEASURES
    OQUIGLEY, J
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 1988, 36 (01): : 43 - 49
  • [32] Computation of response moments of high dimensional MDOF structure excited by stationary non-Gaussian random fields
    Poirion, F
    PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (02) : 169 - 174
  • [33] Simulation of multi-dimensional non-gaussian non-stationary random fields
    Sakamoto, S
    Ghanem, R
    PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (02) : 167 - 176
  • [34] A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields
    Zentner, I.
    Ferre, G.
    Poirion, F.
    Benoit, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 314 : 1 - 13
  • [35] Subset simulation for non-Gaussian dependent random variables given incomplete probability information
    Wang, Fan
    Li, Heng
    STRUCTURAL SAFETY, 2017, 67 : 105 - 115
  • [36] Simulation of non-Gaussian random vibration
    Xu, Fei
    Li, Chuanri
    Jiang, Tongmin
    Rong, Shuanglong
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (09): : 1239 - 1244
  • [37] SIMULATION OF RANDOM NON-GAUSSIAN BACKGROUNDS
    KAZAKOV, VA
    AFRIKANOV, SA
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1977, 44 (09): : 523 - 525
  • [38] SHADOWING BY NON-GAUSSIAN RANDOM SURFACES
    BROWN, GS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1980, 28 (06) : 788 - 790
  • [39] NON-GAUSSIAN RANDOM-WALKS
    BALL, RC
    HAVLIN, S
    WEISS, GH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 4055 - 4059
  • [40] A NON-GAUSSIAN MODEL FOR RANDOM SURFACES
    ADLER, RJ
    FIRMAN, D
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 303 (1479): : 433 - 462