REPRESENTATION OF LEFT CENTRALIZERS FOR ACTIONS OF LOCALLY COMPACT QUANTUM GROUPS

被引:3
|
作者
Kalantar, Mehrdad [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
Locally compact quantum group actions; completely bounded multipliers; representation theorem;
D O I
10.1142/S0129167X13500250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the representation theorem of Junge, Neufang and Ruan in [A representation theorem for locally compact quantum groups, Internat. J. Math. 20(3) (2009) 377-400], and some of the important results which were used in its proof, to the case of actions of locally compact quantum groups on von Neumann algebras.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The approximation property for locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    ADVANCES IN MATHEMATICS, 2024, 438
  • [43] Actions of compact quantum groups on operator algebras
    Izumi, M
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 249 - 253
  • [44] Actions of compact quantum groups on C*-algebras
    Marciniak, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) : 607 - 616
  • [45] Induced corepresentations of locally compact quantum groups
    Kustermans, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 194 (02) : 410 - 459
  • [46] IDEMPOTENT STATES ON LOCALLY COMPACT QUANTUM GROUPS
    Salmi, Pekka
    Skalski, Adam
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (04): : 1009 - 1032
  • [47] Generating Functionals for Locally Compact Quantum Groups
    Skalski, Adam
    Viselter, Ami
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (14) : 10981 - 11009
  • [48] Hopf images in locally compact quantum groups
    Joziak, Pawel
    Kasprzak, Pawel
    Soltan, Piotr M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 141 - 166
  • [49] Averaging multipliers on locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [50] The Haagerup property for locally compact quantum groups
    Daws, Matthew
    Fima, Pierre
    Skalski, Adam
    White, Stuart
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 189 - 229