Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

被引:12
|
作者
Dias, Oscar [1 ]
Gombert, Andreas K. [2 ]
Ferreira, Eugenio C. [1 ]
Rocha, Isabel [1 ]
机构
[1] Univ Minho, IBB, Ctr Biol Engn, Campus Gualtar, P-4710057 Braga, Portugal
[2] Univ Sao Paulo, Polytech Sch, Dept Chem Engn, BR-05424970 Sao Paulo, SP, Brazil
来源
BMC GENOMICS | 2012年 / 13卷
关键词
Genome annotation; Kluyveromyces lactis; Metabolic functions; Transport systems; Merlin; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; GENE; GLUCOSE; TRANSPORT; EVOLUTION; DUPLICATION; EXPRESSION; STRAINS; SYSTEM;
D O I
10.1186/1471-2164-13-517
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results: In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (similar to 90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions: The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Genome-wide functional annotation environment for thermus thermophilus in OBIGrid
    Fukuzaki, A. (akki@gsc.riken.jp), Japanese Society for Artificial Intelligence; Ministry of Education, Science, Sports and Culture of Japan; RIKEN Genomic Science Center; The Initiative for Parallel Bioinformatics, Japan (Springer Verlag):
  • [32] Genome-wide characterization of circulating metabolic biomarkers
    Karjalainen, Minna K.
    Karthikeyan, Savita
    Oliver-Williams, Clare
    Sliz, Eeva
    Allara, Elias
    Fung, Wing Tung
    Surendran, Praveen
    Zhang, Weihua
    Jousilahti, Pekka
    Kristiansson, Kati
    Salomaa, Veikko
    Goodwin, Matt
    Hughes, David A.
    Boehnke, Michael
    Silva, Lilian Fernandes
    Yin, Xianyong
    Mahajan, Anubha
    Neville, Matt J.
    van Zuydam, Natalie R.
    de Mutsert, Renee
    Li-Gao, Ruifang
    Mook-Kanamori, Dennis O.
    Demirkan, Ayse
    Liu, Jun
    Noordam, Raymond
    Trompet, Stella
    Chen, Zhengming
    Kartsonaki, Christiana
    Li, Liming
    Lin, Kuang
    Hagenbeek, Fiona A.
    Hottenga, Jouke Jan
    Pool, Rene
    Ikram, M. Arfan
    van Meurs, Joyce
    Haller, Toomas
    Milaneschi, Yuri
    Kahonen, Mika
    Mishra, Pashupati P.
    Joshi, Peter K.
    Macdonald-Dunlop, Erin
    Mangino, Massimo
    Zierer, Jonas
    Acar, Ilhan E.
    Hoyng, Carel B.
    Lechanteur, Yara T. E.
    Franke, Lude
    Kurilshikov, Alexander
    Zhernakova, Alexandra
    Beekman, Marian
    NATURE, 2024, 628 (8006) : 130 - 138
  • [33] Genome-wide characterization of circulating metabolic biomarkers
    Minna K. Karjalainen
    Savita Karthikeyan
    Clare Oliver-Williams
    Eeva Sliz
    Elias Allara
    Wing Tung Fung
    Praveen Surendran
    Weihua Zhang
    Pekka Jousilahti
    Kati Kristiansson
    Veikko Salomaa
    Matt Goodwin
    David A. Hughes
    Michael Boehnke
    Lilian Fernandes Silva
    Xianyong Yin
    Anubha Mahajan
    Matt J. Neville
    Natalie R. van Zuydam
    Renée de Mutsert
    Ruifang Li-Gao
    Dennis O. Mook-Kanamori
    Ayse Demirkan
    Jun Liu
    Raymond Noordam
    Stella Trompet
    Zhengming Chen
    Christiana Kartsonaki
    Liming Li
    Kuang Lin
    Fiona A. Hagenbeek
    Jouke Jan Hottenga
    René Pool
    M. Arfan Ikram
    Joyce van Meurs
    Toomas Haller
    Yuri Milaneschi
    Mika Kähönen
    Pashupati P. Mishra
    Peter K. Joshi
    Erin Macdonald-Dunlop
    Massimo Mangino
    Jonas Zierer
    Ilhan E. Acar
    Carel B. Hoyng
    Yara T. E. Lechanteur
    Lude Franke
    Alexander Kurilshikov
    Alexandra Zhernakova
    Marian Beekman
    Nature, 2024, 628 : 130 - 138
  • [34] Visualizing metabolic activity on a genome-wide scale
    Luyf, ACM
    de Gast, J
    van Kampen, AHC
    BIOINFORMATICS, 2002, 18 (06) : 813 - 818
  • [35] Genome-wide analysis of bacterial metabolic pathways
    Mary Wildermuth
    Genome Biology, 1 (1)
  • [36] Genome-wide screen for metabolic syndrome loci
    Kristiansson, K.
    Perola, M.
    Surakka, I.
    Tikkanen, E.
    Havulinna, A.
    Silander, K.
    Jula, A.
    Ripatti, S.
    Peltonen, L.
    Salomaa, V.
    EUROPEAN HEART JOURNAL, 2010, 31 : 901 - 902
  • [37] Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis
    Ercan, Onur
    Wels, Michiel
    Smid, Eddy J.
    Kleerebezem, Michiel
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (07) : 2554 - 2561
  • [38] A Metabolic (Re-)Balancing Act
    Abraham, Robert T.
    Eng, Christina H.
    MOLECULAR CELL, 2010, 38 (04) : 481 - 482
  • [39] Annotation and Specificity of Existing Genome-Wide Small Interfering RNA Libraries
    Kozak, Karol
    NUCLEIC ACID THERAPEUTICS, 2013, 23 (01) : 71 - 80
  • [40] Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification
    Etebari, K.
    Asgari, S.
    INSECT MOLECULAR BIOLOGY, 2016, 25 (06) : 788 - 799