Local and global solvability for Keller-Segel system in Besov-Morrey spaces

被引:2
|
作者
Nogayama, Toru [1 ]
Sawano, Yoshihiro [1 ]
机构
[1] Chuo Univ, Dept Math, Tokyo, Japan
基金
日本学术振兴会;
关键词
Keller-Segel system; Homogeneous Besov-Morrey spaces; Cauchy problems; NAVIER-STOKES EQUATION; DRIFT-DIFFUSION SYSTEM; HEAT-EQUATIONS; WELL-POSEDNESS; EXISTENCE;
D O I
10.1016/j.jmaa.2022.126508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the Cauchy problems for the Keller-Segel system. The local/global existence of the solution is established for initial data in homogeneous Besov-Morrey spaces in the scaling critical case. Unfortunately, Besov-Morrey spaces are not separable in general. So, attention must be paid to the compatibility of initial data. From this viewpoint, a new closed subspace of Besov-Morrey spaces is introduced to consider the local solution. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条