This paper concerns the Cauchy problems for the Keller-Segel system. The local/global existence of the solution is established for initial data in homogeneous Besov-Morrey spaces in the scaling critical case. Unfortunately, Besov-Morrey spaces are not separable in general. So, attention must be paid to the compatibility of initial data. From this viewpoint, a new closed subspace of Besov-Morrey spaces is introduced to consider the local solution. (c) 2022 Elsevier Inc. All rights reserved.
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
Chen, Xiaoli
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN,
2018,
37
(04):
: 417
-
433
机构:
Univ Fed Alagoas, Dept Matemat, Av Lourival Melo Mota S-N, BR-57072970 Maceio, AL, BrazilUniv Fed Alagoas, Dept Matemat, Av Lourival Melo Mota S-N, BR-57072970 Maceio, AL, Brazil
Huaroto, Gerardo
Neves, Wladimir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio De Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Fed Alagoas, Dept Matemat, Av Lourival Melo Mota S-N, BR-57072970 Maceio, AL, Brazil
机构:
Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R ChinaBaoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
机构:
Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, JapanWaseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan