Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical Besov-Morrey spaces

被引:0
|
作者
Nogayama, Toru
Sawano, Yoshihiro
机构
基金
日本学术振兴会;
关键词
Keller-Segel equation; Drift-diffusion system; Singular limit problem; Lorentz spaces; Global well-posedness; Scaling invariance; PARABOLIC-PARABOLIC TYPE; NAVIER-STOKES EQUATION; HEAT-EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2023.127207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singular limit problem for the Cauchy problem of the Keller-Segel equation is considered in a critical function space based on Morrey spaces. A solution to the Keller-Segel system in a scaling critical function space converges to a solution to the drift-diffusion system of parabolic-elliptic type in the critical space strongly as the relaxation time tends to infinity. The key ingredient is a Banach space-valued Lorentz space in time. By the careful use of the real interpolation, a sharp estimate for the heat semigroup is obtained.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 50 条