Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions

被引:0
|
作者
Sbibih, Driss [1 ]
Serghini, Abdelhafid [2 ]
Tijini, Ahmed [1 ]
Zidna, Ahmed [3 ]
机构
[1] Univ Mohammed 1, URAC05, FSO EST, Lab MATSI, Oujda, Morocco
[2] Univ Mohammed 1, URAC05, EST, Lab MATSI, Oujda, Morocco
[3] Univ Lorraine, LITA, Metz, France
关键词
Polar forms; Quasi-interpolation; splines; Powell-Sabin partitions; B-SPLINES; RULE;
D O I
10.1007/s10543-014-0523-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we introduce a B-spline representation of the cubic Hermite Powell-Sabin interpolant of any polynomial or any piecewise polynomial, over Powell-Sabin partitions of class at least , in terms of their polar forms. We use this B-spline representation for constructing several superconvergent discrete cubic spline quasi-interpolants which approximate a function better than the superconvergent quadratic ones developed in one of our recent published papers. The new results presented in this work are an improvement and a generalization of those studied recently in the literature. We also illustrate by numerical examples that global errors and cubature rules based on these cubic Powell-Sabin spline quasi-interpolants are positively affected by the superconvergence phenomenon.
引用
收藏
页码:797 / 821
页数:25
相关论文
共 50 条
  • [31] Superconvergent Nystrom Method Based on Spline Quasi-Interpolants for Nonlinear Urysohn Integral Equations
    Remogna, Sara
    Sbibih, Driss
    Tahrichi, Mohamed
    MATHEMATICS, 2023, 11 (14)
  • [32] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    D. Barrera
    M. J. Ibáñez
    P. Sablonnière
    D. Sbibih
    Constructive Approximation, 2008, 28 : 237 - 251
  • [33] C1 hierarchical Riesz bases of Lagrange type on Powell-Sabin triangulations
    Maes, Jan
    Bultheel, Adhemar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 1 - 19
  • [34] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    Barrera, D.
    Ibanez, M. J.
    Sablonniere, P.
    Sbibih, D.
    CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 237 - 251
  • [35] A new B-spline representation for cubic splines over Powell-Sabin triangulations
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 37 : 42 - 56
  • [36] Construction of superconvergent quasi-interpolants using new normalized C2 cubic B-splines
    Rahouti, A.
    Serghini, A.
    Tijini, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 178 (178) : 603 - 624
  • [37] Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 145 - 156
  • [38] Nonlinear 2D C1 Quadratic Spline Quasi-Interpolants on Triangulations for the Approximation of Piecewise Smooth Functions
    Arandiga, Francesc
    Remogna, Sara
    AXIOMS, 2023, 12 (10)
  • [39] On numerical quadrature for C1 quadratic Powell-Sabin 6-split macro-triangles
    Barton, Michael
    Kosinka, Jiri
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 239 - 250
  • [40] Spline quasi-interpolation in the Bernstein basis on the Powell-Sabin 6-split of a type-1 triangulation
    Barrera, D.
    Eddargani, S.
    Ibanez, M. J.
    Remogna, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424