A Helly-type theorem for higher-dimensional transversals

被引:4
|
作者
Aronov, B
Goodman, JE
Pollack, R
机构
[1] Polytech Univ, Brooklyn, NY 11201 USA
[2] CUNY City Coll, New York, NY 10031 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
基金
美国国家科学基金会;
关键词
Helly-type theorem; geometric transversal theory; k-unbounded; convex sets; k-transversal;
D O I
10.1016/S0925-7721(01)00025-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a collection of compact convex sets of bounded diameters in R-d that is unbounded in k independent directions has a k-flat transversal for k < d if and only if every d + I of the sets have a k-transversal. This result generalizes a theorem of Hadwiger(-Danzer-Grunbaum-Klee) on line transversals for an unbounded family of compact convex sets. It is the first Helly-type theorem known for transversals of dimension between 1 and d - 1. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
  • [41] CHARACTERIZATION OF CONVEX SURFACES OF HELLY-TYPE
    SILVERMAN, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A172 - A172
  • [42] HELLY-TYPE THEOREMS ABOUT SETS
    FISK, S
    ABBWJACKSON, D
    KLEITMAN, D
    DISCRETE MATHEMATICS, 1980, 32 (01) : 19 - 25
  • [43] Helly-Type Theorems in Property Testing
    Chakraborty, Sourav
    Pratap, Rameshwar
    Roy, Sasanka
    Saraf, Shubhangi
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 306 - 317
  • [44] Discrete Helly-type theorems for pseudohalfplanes
    Keszegh, Balazs
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [45] Helly-Type Theorems for Approximate Covering
    Demouth, Julien
    Devillers, Olivier
    Glisse, Marc
    Goaoc, Xavier
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 120 - 128
  • [46] CHARACTERIZATION OF CONVEX SURFACES OF HELLY-TYPE
    SILVERMAN, R
    ARCHIV DER MATHEMATIK, 1976, 27 (06) : 640 - 644
  • [47] Helly-Type Theorems for Approximate Covering
    Julien Demouth
    Olivier Devillers
    Marc Glisse
    Xavier Goaoc
    Discrete & Computational Geometry, 2009, 42 : 379 - 398
  • [48] On a Helly-type question for central symmetry
    Alexey Garber
    Edgardo Roldán-Pensado
    Periodica Mathematica Hungarica, 2019, 79 : 78 - 85
  • [49] A MELANGE OF DIAMETER HELLY-TYPE THEOREMS
    Dillon, Travis
    Soberon, Pablo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1615 - 1627
  • [50] On a Helly-type question for central symmetry
    Garber, Alexey
    Roldan-Pensado, Edgardo
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (01) : 78 - 85