Position estimation using neural networks in semi-monolithic PET detectors

被引:14
|
作者
Freire, M. [1 ]
Barrio, J. [1 ]
Cucarella, N. [1 ]
Valladares, C. [1 ]
Gonzalez-Montoro, A. [1 ]
de Alfonso, C. [1 ]
Benlloch, J. M. [1 ]
Gonzalez, A. J. [1 ]
机构
[1] Univ Politecn Valencia, Ctr Mixto CSIC, Inst Instrumentac Imagen Mol I3M, Camino Vera s-n, E-46022 Valencia, Spain
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2022年 / 67卷 / 24期
关键词
semi-monolithic detector; neural network; PET; total body PET; position estimation; machine learning; FIELD-OF-VIEW; DOI CAPABILITY; PERFORMANCE; ALGORITHM; CRYSTALS; DESIGN;
D O I
10.1088/1361-6560/aca389
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. The goal of this work is to experimentally compare the 3D spatial and energy resolution of a semi-monolithic detector suitable for total-body positron emission tomography (TB-PET) scanners using different surface crystal treatments and silicon photomultiplier (SiPM) models. Approach. An array of 1 x 8 lutetium yttrium oxyorthosilicate (LYSO) slabs of 25.8 x 3.1 x 20 mm(3) separated with Enhanced Specular Reflector (ESR) was coupled to an array of 8 x 8 SiPMs. Three different treatments for the crystal were evaluated: ESR + RR + B, with lateral faces black (B) painted and a retroreflector (RR) layer added to the top face; ESR + RR, with lateral faces covered with ESR and a RR layer on the top face and; All ESR, with lateral and top sides with ESR. Additionally, two SiPM array models from Hamamatsu Photonics belonging to the series S13361-3050AE-08 (S13) and S14161-3050AS-08 (S14) have been compared. Coincidence data was experimentally acquired using a Na-22 point source, a pinhole collimator, a reference detector and moving the detector under study in 1 mm steps in the x- and DOI- directions. The spatial performance was evaluated by implementing a neural network (NN) technique for the impact position estimation in the x- (monolithic) and DOI directions. Results. Energy resolution values of 16 +/- 1%, 11 +/- 1%, 16 +/- 1%, 15 +/- 1%, and 13 +/- 1% were obtained for the S1 3-ESR + B + RR, S1 3-All ESR, S14-ESR + B + RR, S14-ESR + RR, and S14-All ESR, respectively. Regarding positioning accuracy, mean average error of 1.1 +/- 0.5, 1.3 +/- 0.5 and 1.3 +/- 0.5 were estimated for the x- direction and 1.7 +/- 0.8, 2.0 +/- 0.9 and 2.2 +/- 1.0 for the DOI- direction, for the ESR + B + RR, ESR + RR and All ESR cases, respectively, regardless of the SiPM model. Significance. Overall, the obtained results show that the proposed semi-monolithic detectors are good candidates for building TB-PET scanners.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Position Estimation at Zero Speed for PMSMs Using Artificial Neural Networks
    Urbanski, Konrad
    Janiszewski, Dariusz
    ENERGIES, 2021, 14 (23)
  • [22] Improving depth-of-interaction resolution in pixellated PET detectors using neural networks
    Zatcepin, Artem
    Pizzichemi, Marco
    Polesel, Andrea
    Paganoni, Marco
    Auffray, Etiennette
    Ziegler, Sibylle, I
    Omidvari, Negar
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (17):
  • [23] Gamma-Ray Position-of-Interaction Estimation in a Thick Monolithic LaBr3 Detector Using Artificial Neural Networks
    Ferri, T.
    Rosellini, F.
    Caracciolo, A.
    Borghi, G.
    Carminati, M.
    Camera, F.
    Giaz, A.
    Fiorini, C.
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2025, 9 (03) : 284 - 295
  • [24] Calibration of PET Detectors Based on Monolithic Blocks Using Voronoi Diagrams
    Freire, Marta
    Gonzalez-Montoro, Andrea
    Sanchez, Filomeno
    Gonzalez, Antonio J.
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [25] Sensorless position estimation of switched reluctance motors using artificial neural networks
    Lachman, T
    Mohamad, TR
    Teo, SP
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT SYSTEMS AND SIGNAL PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2003, : 220 - 225
  • [26] Tomography of quantum detectors using neural networks
    Ma, Hailan
    Xiao, Shuixin
    Dong, Daoyi
    Petersen, Ian R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 5875 - 5880
  • [27] Evolution of PET Detectors and Event Positioning Algorithms Using Monolithic Scintillation Crystals
    Gonzalez-Montoro, Andrea
    Gonzalez, Antonio J.
    Pourashraf, Shirin
    Miyaoka, Robert S.
    Bruyndonckx, Peter
    Chinn, Garry
    Pierce, Larry A., II
    Levin, Craig S.
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (03) : 282 - 305
  • [28] Improved Nearest Neighbor Methods for Gamma Photon Interaction Position Determination in Monolithic Scintillator PET Detectors
    van Dam, Herman T.
    Seifert, Stefan
    Vinke, Ruud
    Dendooven, Peter
    Lohner, Herbert
    Beekman, Freek J.
    Schaart, Dennis R.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (05) : 2139 - 2147
  • [29] Electronics for Monolithic Scintillator PET Detector Modules Based on Neural Network Position Estimators
    Wang Yonggang
    Du Junwei
    Zhou Zhonghui
    Yang Yang
    Zhang Lijun
    Bruyndonckx, Peter
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 554 - +
  • [30] Performance Study of Neural Network Position Estimators for the Monolithic Scintillator PET detector Modules
    Du Junwei
    Wang Yonggang
    Zhang Lijun
    Chen Jun
    Yang Yang
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010,