ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis

被引:35
|
作者
He, W. [1 ,2 ]
Zhao, S. [2 ]
Liu, X. [2 ]
Dong, S. [2 ]
Lv, J. [2 ]
Liu, D. [2 ]
Wang, J. [1 ,2 ]
Meng, Z. [1 ]
机构
[1] China Univ Technol, Sch Biosci & Bioengn, Guangzhou, Guangdong, Peoples R China
[2] BGI Shenzhen, Shenzhen, Peoples R China
关键词
Next-generation sequencing; Resequencing; Toolkit; Sequence variation; GENOME SEQUENCE; ALIGNMENT;
D O I
10.4238/2013.December.4.15
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.
引用
收藏
页码:6275 / 6283
页数:9
相关论文
共 50 条
  • [31] Next-Generation Sequencing Data Analysis
    Chowdhry, Amit K.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024,
  • [32] IntSIM: An Integrated Simulator of Next-Generation Sequencing Data
    Yuan, Xiguo
    Zhang, Junying
    Yang, Liying
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (02) : 441 - 451
  • [33] Next-generation large-scale binary protein interaction network for Drosophila melanogaster
    Hong-Wen Tang
    Kerstin Spirohn
    Yanhui Hu
    Tong Hao
    István A. Kovács
    Yue Gao
    Richard Binari
    Donghui Yang-Zhou
    Kenneth H. Wan
    Joel S. Bader
    Dawit Balcha
    Wenting Bian
    Benjamin W. Booth
    Atina G. Coté
    Steffi de Rouck
    Alice Desbuleux
    Kah Yong Goh
    Dae-Kyum Kim
    Jennifer J. Knapp
    Wen Xing Lee
    Irma Lemmens
    Cathleen Li
    Mian Li
    Roujia Li
    Hyobin Julianne Lim
    Yifang Liu
    Katja Luck
    Dylan Markey
    Carl Pollis
    Sudharshan Rangarajan
    Jonathan Rodiger
    Sadie Schlabach
    Yun Shen
    Dayag Sheykhkarimli
    Bridget TeeKing
    Frederick P. Roth
    Jan Tavernier
    Michael A. Calderwood
    David E. Hill
    Susan E. Celniker
    Marc Vidal
    Norbert Perrimon
    Stephanie E. Mohr
    Nature Communications, 14
  • [34] In vivo mRNA display enables large-scale proteomics by next generation sequencing
    Oikonomou, Panos
    Salatino, Roberto
    Tavazoie, Saeed
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (43) : 26710 - 26718
  • [35] Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks
    Bohan, David A.
    Vacher, Corinne
    Tamaddoni-Nezhad, Alireza
    Raybould, Alan
    Dumbrell, Alex J.
    Woodward, Guy
    TRENDS IN ECOLOGY & EVOLUTION, 2017, 32 (07) : 477 - 487
  • [36] Next-generation large-scale binary protein interaction network for Drosophila melanogaster
    Tang, Hong-Wen
    Spirohn, Kerstin
    Hu, Yanhui
    Hao, Tong
    Kovacs, Istvan A.
    Gao, Yue
    Binari, Richard
    Yang-Zhou, Donghui
    Wan, Kenneth H.
    Bader, Joel S.
    Balcha, Dawit
    Bian, Wenting
    Booth, Benjamin W.
    Cote, Atina G.
    de Rouck, Steffi
    Desbuleux, Alice
    Goh, Kah Yong
    Kim, Dae-Kyum
    Knapp, Jennifer J.
    Lee, Wen Xing
    Lemmens, Irma
    Li, Cathleen
    Li, Mian
    Li, Roujia
    Lim, Hyobin Julianne
    Liu, Yifang
    Luck, Katja
    Markey, Dylan
    Pollis, Carl
    Rangarajan, Sudharshan
    Rodiger, Jonathan
    Schlabach, Sadie
    Shen, Yun
    Sheykhkarimli, Dayag
    TeeKing, Bridget
    Roth, Frederick P.
    Tavernier, Jan
    Calderwood, Michael A.
    Hill, David E.
    Celniker, Susan E.
    Vidal, Marc
    Perrimon, Norbert
    Mohr, Stephanie E.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [37] Next-Generation Sequencing of the Chrysanthemum nankingense (Asteraceae) Transcriptome Permits Large-Scale Unigene Assembly and SSR Marker Discovery
    Wang, Haibin
    Jiang, Jiafu
    Chen, Sumei
    Qi, Xiangyu
    Peng, Hui
    Li, Pirui
    Song, Aiping
    Guan, Zhiyong
    Fang, Weimin
    Liao, Yuan
    Chen, Fadi
    PLOS ONE, 2013, 8 (04):
  • [38] Large-scale genotyping of highly polymorphic loci by next-generation sequencing: how to overcome the challenges to reliably genotype individuals?
    M Ferrandiz-Rovira
    T Bigot
    D Allainé
    M-P Callait-Cardinal
    A Cohas
    Heredity, 2015, 114 : 485 - 493
  • [39] Large-scale genotyping of highly polymorphic loci by next-generation sequencing: how to overcome the challenges to reliably genotype individuals?
    Ferrandiz-Rovira, M.
    Bigot, T.
    Allaine, D.
    Callait-Cardinal, M-P
    Cohas, A.
    HEREDITY, 2015, 114 (05) : 485 - 493
  • [40] PriVar: a toolkit for prioritizing SNVs and indels from next-generation sequencing data
    Zhang, Lu
    Zhang, Jing
    Yang, Jing
    Ying, Dingge
    Lau, Yu Lung
    Yang, Wanling
    BIOINFORMATICS, 2013, 29 (01) : 124 - 125