Statistical theory of reversals in two-dimensional confined turbulent flows

被引:21
|
作者
Shukla, Vishwanath [1 ]
Fauve, Stephan
Brachet, Marc
机构
[1] PSL Res Univ, Lab Phys Stat, Ecole Normale Super, 24 Rue Lhomond, F-75005 Paris, France
关键词
DYNAMICS;
D O I
10.1103/PhysRevE.94.061101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that the truncated Euler equation (TEE), i.e., a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined two-dimensional flow obeying Navier-Stokes equation (NSE) with bottom friction and a spatially periodic forcing. The random reversals of the NSE large-scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation. We demonstrate that these NSE bifurcations are described by the related TEE microcanonical distribution which displays transitions from Gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Mean velocity profiles of two-dimensional fully developed turbulent flows
    Di Nucci, Carmine
    Spena, Aniello Russo
    COMPTES RENDUS MECANIQUE, 2012, 340 (09): : 629 - 640
  • [42] Optimal eddy viscosity in closure models for two-dimensional turbulent flows
    Matharu, Pritpal
    Protas, Bartosz
    PHYSICAL REVIEW FLUIDS, 2022, 7 (04):
  • [43] A CALCULATION METHOD FOR TWO-DIMENSIONAL WALL-BOUNDED TURBULENT FLOWS
    JOHNSTON, LJ
    AERONAUTICAL JOURNAL, 1986, 90 (895): : 174 - 184
  • [44] Effects of flow width in nominally two-dimensional turbulent separated flows
    Ciampoli, F
    Hancock, PE
    EXPERIMENTS IN FLUIDS, 2006, 40 (02) : 196 - 202
  • [45] Effects of flow width in nominally two-dimensional turbulent separated flows
    F. Ciampoli
    P. E. Hancock
    Experiments in Fluids, 2006, 40 : 196 - 202
  • [46] Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution
    P. H. Chavanis
    A. Naso
    B. Dubrulle
    The European Physical Journal B, 2010, 77 : 167 - 186
  • [47] A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
    Mininni, PD
    Montgomery, DC
    Pouquet, AG
    PHYSICS OF FLUIDS, 2005, 17 (03) : 035112 - 1
  • [48] Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution
    Chavanis, P. H.
    Naso, A.
    Dubrulle, B.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (02): : 167 - 186
  • [49] A simple prediction algorithm for the Lagrangian motion in two-dimensional turbulent flows
    Piterbarg, LI
    Özgökmen, TM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 63 (01) : 116 - 148
  • [50] Melnikov Theory for Two-Dimensional Manifolds in Three-Dimensional Flows
    Priyankara K.G.D.S.
    Balasuriya S.
    Bollt E.M.
    SIAM Journal on Applied Dynamical Systems, 2022, 21 (04): : 2642 - 2696