Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators

被引:175
|
作者
Srinil, Narakorn [1 ]
Zanganeh, Hossein [1 ]
机构
[1] Univ Strathclyde, Dept Naval Architecture & Marine Engn, Glasgow G4 0LZ, Lanark, Scotland
关键词
Vortex-induced vibration (VIV); Circular cylinder; Cross-flow oscillation; In-line oscillation; Fluid-structure interaction; Wake oscillator; CIRCULAR-CYLINDERS; FREQUENCY-RESPONSE; CRITICAL MASS; RESONANCE; MOTIONS; RATIO;
D O I
10.1016/j.oceaneng.2012.06.025
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Many studies have typically applied a linear structural spring-mass-damper oscillator and a van der Pol wake oscillator to model a one-dimensional cross-flow vortex-induced vibration (VIV). In this study, an advanced model for predicting a two-dimensional coupled cross-flow/in-line VIV of a flexibly mounted circular cylinder in a uniform flow is proposed and validated. The ensuing dynamical system is based on double Duffing-van der Pol (structural-wake) oscillators with the two structural equations containing both cubic and quadratic nonlinear terms. The cubic nonlinearities capture the geometrical coupling of cross-flow/in-line displacements excited by hydrodynamic lift/drag forces whereas the quadratic nonlinearities allow the wake-cylinder interactions. Some empirical coefficients are calibrated against published experimental results to establish a new generic analytical function accounting for the dependence of VIV on a physical mass and/or damping parameter. By varying flow velocities in the numerical simulations, the derived low-order model captures several important VIV characteristics including a two-dimensional lock-in, hysteresis phenomenon and figure-of-eight trajectory tracing the periodically coupled in-line/cross-flow oscillations with their tuned two-to-one resonant frequencies. By making use of a newly derived empirical formula, the predicted maximum cross-flow/in-line VIV amplitudes and associated lock-in ranges compare well with several experimental results for cylinders with low/high mass or damping ratios. Moreover, the parametric studies highlight the important effect of geometrical nonlinearities through new displacement coupling terms and the ratio of in-line to cross-flow natural frequencies of the freely vibrating cylinder. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [21] Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow
    Bourguet, Remi
    Karniadakis, George Em
    Triantafyllou, Michael S.
    COMPUTERS & STRUCTURES, 2013, 122 : 155 - 163
  • [22] Fatigue damage from time domain simulation of combined in-line and cross-flow vortex-induced vibrations
    Thorsen, M. J.
    Saevik, S.
    Larsen, C. M.
    MARINE STRUCTURES, 2015, 41 : 200 - 222
  • [23] Numerical investigation of vortex-induced vibrations (VIV) of a rotating cylinder in in-line and cross-flow directions subjected to oscillatory flow
    Rehman, Ubaid Ur
    Munir, Adnan
    Khan, Niaz Bahadur
    Zhao, Ming
    Kashif, Muhammad
    Islam, Mohammad S.
    Saeed, Zeeshan
    Ali, Mian Ashfaq
    OCEAN ENGINEERING, 2024, 304
  • [24] Dynamic responses of a flexible pipe conveying variable-density fluid and experiencing cross-flow and in-line coupled vortex-induced vibrations
    Xie, Wude
    Liang, Zhenling
    Jiang, Zhaoyang
    Zhu, Lixin
    OCEAN ENGINEERING, 2022, 260
  • [25] Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses
    Wu, Jie
    Lie, Halvor
    Larsen, Carl M.
    Liapis, Stergios
    Baarholm, Rolf
    JOURNAL OF FLUIDS AND STRUCTURES, 2016, 63 : 238 - 258
  • [26] An improved time domain coupled model of Cross-Flow and In-Line Vortex-Induced Vibration for flexible risers
    Yuan, Yuchao
    Xue, Hongxiang
    Tang, Wenyong
    OCEAN ENGINEERING, 2017, 136 : 117 - 128
  • [27] IN-LINE AND CROSS-FLOW INTERACTION OF A FLEXIBLE BEAM SUBJECTED TO VORTEX INDUCED VIBRATIONS
    Wu, Jie
    Lie, Halvor
    Larsen, Carl M.
    Liapis, Stergios
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 2, 2014,
  • [28] Experimental investigation on coupled cross-flow and in-line vortex-induced vibration responses of two staggered circular cylinders
    Zhang, Cheng
    Kang, Zhuang
    Xiong, Yeping
    Ai, Shangmao
    Ma, Gang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2021, 235 (01) : 288 - 300
  • [29] A prediction model for in-line and cross-flow coupled vortex-induced vibration of a near-wall circular cylinder
    Tao, Mengmeng
    Sun, Xu
    Han, Peiyi
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [30] Prediction of coupled in-line and cross-flow vortex-induced vibrations of fluid-transporting free-spanning submarine pipelines: an integral transform solution
    Li, Tongtong
    An, Chen
    Duan, Menglan
    SHIPS AND OFFSHORE STRUCTURES, 2022, 17 (10) : 2282 - 2291