Iterative linear focal-plane wavefront correction

被引:18
|
作者
Smith, C. S. [1 ]
Marinica, R. [1 ]
den Dekker, A. J. [1 ]
Verhaegen, M. [1 ]
Korkiakoski, V. [2 ]
Keller, C. U. [2 ]
Doelman, N. [3 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[2] Leiden Observ, NL-2333 CA Leiden, Netherlands
[3] TNO Sci & Ind, NL-2628 CK Delft, Netherlands
关键词
PHASE-DIVERSITY; RETRIEVAL; ABERRATIONS; IMAGE;
D O I
10.1364/JOSAA.30.002002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an efficient approximation to the nonlinear phase diversity (PD) method for wavefront reconstruction and correction from intensity measurements with potential of being used in real-time applications. The new iterative linear phase diversity (ILPD) method assumes that the residual phase aberration is small and makes use of a first-order Taylor expansion of the point spread function (PSF), which allows for arbitrary (large) diversities in order to optimize the phase retrieval. For static disturbances, at each step, the residual phase aberration is estimated based on one defocused image by solving a linear least squares problem, and compensated for with a deformable mirror. Due to the fact that the linear approximation does not have to be updated with each correction step, the computational complexity of the method is reduced to that of a matrix-vector multiplication. The convergence of the ILPD correction steps has been investigated and numerically verified. The comparative study that we make demonstrates the improved performance in computational time with no decrease in accuracy with respect to existing methods that also linearize the PSF. (C) 2013 Optical Society of America
引用
收藏
页码:2002 / 2011
页数:10
相关论文
共 50 条
  • [11] Deep learning for space-borne focal-plane wavefront sensing
    Dumont, Maxime
    Correia, Carlos
    Sauvage, Jean-Francois
    Schwartz, Noah
    Gray, Morgan
    Beltramo-Martin, Olivier
    Cardoso, Jaime
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
  • [12] Extremely fast focal-plane wavefront sensing for extreme adaptive optics
    Keller, Christoph U.
    Korkiakoski, Visa
    Doelman, Niek
    Fraanje, Rufus
    Andrei, Raluca
    Verhaegen, Michel
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [13] Focal-plane wavefront sensing with the vector-Apodizing Phase Plate
    Bos, S. P.
    Doelman, D. S.
    Lozi, J.
    Guyon, O.
    Keller, C. U.
    Miller, K. L.
    Jovanovic, N.
    Martinache, F.
    Snik, F.
    ASTRONOMY & ASTROPHYSICS, 2019, 632
  • [14] A nonuniformity correction algorithm for infrared focal-plane arrays
    Zhang, JJ
    Xing, SX
    Chang, BK
    Qian, YS
    Sun, LJ
    INFRARED COMPONENTS AND THEIR APPLICATIONS, 2005, 5640 : 425 - 433
  • [15] NONUNIFORMITY CORRECTION AND CORRECTABILITY OF INFRARED FOCAL-PLANE ARRAYS
    SCHULZ, M
    CALDWELL, L
    INFRARED PHYSICS & TECHNOLOGY, 1995, 36 (04) : 763 - 777
  • [16] An algebraic algorithm for nonuniformity correction in focal-plane arrays
    Ratliff, BM
    Hayat, MM
    Hardie, RC
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (09): : 1737 - 1747
  • [17] Statistical algorithm for nonuniformity correction in focal-plane arrays
    Hayat, MM
    Torres, SN
    Armstrong, E
    Cain, SC
    Yasuda, B
    APPLIED OPTICS, 1999, 38 (05) : 772 - 780
  • [18] Focal-plane polarimeter
    Strauch, S
    QUARKS, HADRONS AND NUCLEI, 2004, : 327 - 335
  • [19] Calibrating a high-resolution wavefront corrector with a static focal-plane camera
    Korkiakoski, Visa
    Doelman, Niek
    Codona, Johanan
    Kenworthy, Matthew
    Otten, Gilles
    Keller, Christoph U.
    APPLIED OPTICS, 2013, 52 (31) : 7554 - 7563
  • [20] FOCAL-PLANE FOOTNOTE
    RASCHE, RW
    PHOTONICS SPECTRA, 1994, 28 (09) : 12 - 12