Fuzzy Bipolar Mathematical Morphology: A General Algebraic Setting

被引:0
|
作者
Bloch, Isabelle [1 ]
机构
[1] Telecom ParisTech, CNRS, LTCI, Paris, France
关键词
Bipolar information; fuzzy bipolar dilation and erosion; bi-polar connectives; SETS; DILATIONS; EROSIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bipolar information is an important component in information processing, to handle both positive information (e.g. preferences) and negative information (e.g. constraints) in an asymmetric way. In this paper, a general algebraic framework is proposed to handle such information using mathematical morphology operators, leading to results that apply to any partial ordering.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [21] Compensatory fuzzy mathematical morphology
    Agustina Bouchet
    Juan I. Pastore
    Marcel Brun
    Virginia L. Ballarin
    Signal, Image and Video Processing, 2017, 11 : 1065 - 1072
  • [22] General sweep mathematical morphology
    Shih, Frank Y.
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 140, 2006, 140 : 265 - 306
  • [23] General sweep mathematical morphology
    Shih, FY
    Gaddipati, V
    PATTERN RECOGNITION, 2003, 36 (07) : 1489 - 1500
  • [24] L-Fuzzy Mathematical Morphology: An Extension of Interval-Valued and Intuitionistic Fuzzy Mathematical Morphology
    Sussner, Peter
    Nachtegael, Mike
    Melange, Tom
    2009 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2009, : 315 - +
  • [25] FEEDBACK-SYSTEMS IN A GENERAL ALGEBRAIC SETTING
    LIEPA, PE
    WONHAM, WM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (09): : 728 - 741
  • [26] On fuzzy bipolar soft sets, their algebraic structures and applications
    Naz, Munazza
    Shabir, Muhammad
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (04) : 1645 - 1656
  • [27] GENERAL ADAPTIVE NEIGHBORHOOD MATHEMATICAL MORPHOLOGY
    Pinoli, Jean-Charles
    Debayle, Johan
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2249 - 2252
  • [28] ON FORMALIZATION OF A GENERAL FUZZY MATHEMATICAL PROBLEM
    ORLOVSKY, SA
    FUZZY SETS AND SYSTEMS, 1980, 3 (03) : 311 - 321
  • [29] Fuzzy geodesic mathematical morphology from fuzzy geodesic distance
    Bloch, I
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 1998, 12 : 43 - 50
  • [30] Geodesic balls in a fuzzy set and fuzzy geodesic mathematical morphology
    Bloch, I
    PATTERN RECOGNITION, 2000, 33 (06) : 897 - 905