Synthesis of One Dimensional Li2MoO4 Nanostructures and Their Electrochemical Performance as Anode Materials for Lithium-ion Batteries

被引:20
|
作者
Liu, Xudong [1 ]
Zhao, Yanming [2 ,3 ]
Dong, Youzhong [3 ]
Fan, Qinghua [3 ]
Kuang, Quan [3 ]
Liang, Zhiyong [1 ]
Lin, Xinghao [1 ]
Han, Wei [1 ]
Li, Qidong [3 ]
Wen, Mingming [3 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Phys, Guangzhou 510640, Guangdong, Peoples R China
关键词
One dimensional nanostructure; Li2MoO4; Sol-gel method; Carbon-coating Citric acid; Formation mechanism; LI-ION; MOLYBDENUM(VI) COMPLEX; CATHODE MATERIAL; CYCLE LIFE; OXIDE; INTERCALATION; NANOMATERIALS; NANOTUBE; LIMN2O4; CAMOO4;
D O I
10.1016/j.electacta.2015.05.174
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One dimensional Li2MoO4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method adding Li2CO3 and MoO3 powders into distilled water with citric acid as an assistant agent and carbon source. Our experimental results show that the formation of the one dimensional nanostructure morphology is evaporation and crystallization process with self-adjusting into a rod-like hexagonal cross-section structure, while the citric acid played an important role during the formation of Li2MoO4 nanotubes under the acidic environment by capping, stabilizing the [1010) facet of Li2MoO4 structure and controlling the concentration of Ir (pH value) of the aqueous solution. Finally, basic electrochemical performance of these one dimensional Li2MoO4 nanostructures including nanorods and nanotubes evaluated as anode materials for lithium-ion batteries (LIBs) are discussed, for comparison, the properties of carbon-free powder sample synthesized by solid-state reaction are also displayed. Experimental results show that different morphology and carbon-coating on the surface have an important influence on electrochemical performance. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 50 条
  • [21] Electrochemical Performance of Silicon/Graphene Nanocomposites Anode Materials for Lithium-ion Batteries
    Xiao S.
    Xie X.
    Xie Y.
    Liu B.
    Liu D.
    Shi Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (09): : 1327 - 1334
  • [22] Electrochemical performance of polygonized carbon nanofibers as anode materials for lithium-ion batteries
    Jinjin Jiang
    xiaolin Tang
    Rui Wu
    Haoqiang Lin
    Meizhen Qu
    Particuology, 2013, 11 (04) : 401 - 408
  • [23] Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries
    Wang, Jianan
    Yang, Guorui
    Wang, Ling
    Yan, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (22) : 8620 - 8629
  • [24] Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries
    Chen, Weihua
    Lan, Meng
    Zhu, Dan
    Wang, Cuilian
    Xue, Shangru
    Yang, Changchun
    Li, Zexian
    Zhang, Jianmin
    Mi, Liwei
    RSC ADVANCES, 2013, 3 (02): : 408 - 412
  • [25] Morphology controlledNiCo2O4as anode materials for high electrochemical performance lithium-ion batteries
    Huo, Jiaofei
    Zhang, Guangpeng
    Wang, Yinwei
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2021, 96 (01) : 142 - 146
  • [26] One-dimensional Li3VO4/carbon fiber composites for enhanced electrochemical performance as an anode material for lithium-ion batteries
    Song, Jungwook
    Maulana, Achmad Yanuar
    Jae, Woojin
    Gim, Hyunjeong
    Yun, Boram
    Futalan, Cybelle M.
    Kim, Jongsik
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 140 : 142 - 152
  • [27] Facile synthesis of low-dimensional SnO2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries
    Hameed, Muhammad Usman
    Dar, Sami Ullah
    Ali, Shafqat
    Liu, Sitong
    Akram, Raheel
    Wu, Zhanpeng
    Butler, Ian S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 91 : 119 - 127
  • [28] Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries
    Wessells, Colin
    La Mantia, Fabio
    Deshazer, Heather
    Huggins, Robert A.
    Cui, Yi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A352 - A355
  • [29] Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries
    Yingqiang Fan
    Xiujuan Chen
    Laixi Zhang
    Jiakui Wu
    Linlin Wang
    Shurong Yu
    Mingliang Wu
    Ionics, 2023, 29 : 497 - 504
  • [30] Synthesis, characterization and electrochemical performance of LiNiVO4 anode material for lithium-ion batteries
    Han, Xiaoyan
    Tang, Wenchao
    Yi, Zonghui
    Sun, Jutang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (12) : 1671 - 1676