Hamilton cycles in sparse locally connected graphs
被引:3
|
作者:
van Aardt, Susan A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South AfricaUniv South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
van Aardt, Susan A.
[1
]
Burger, Alewyn P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South AfricaUniv South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
Burger, Alewyn P.
[2
]
Frick, Marietjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South AfricaUniv South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
Frick, Marietjie
[3
]
Thomassen, Carsten
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, DenmarkUniv South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
Thomassen, Carsten
[4
]
de Wet, Johan P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South AfricaUniv South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
de Wet, Johan P.
[3
,5
]
机构:
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
Locally connected;
Hamiltonian;
NP-complete;
Polynomial time algorithm;
D O I:
10.1016/j.dam.2018.10.031
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
Krivelevich, Michael
Lee, Choongbum
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, Cambridge, MA 02139 USATel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
Lee, Choongbum
Sudakov, Benny
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Dept Math, CH-8092 Zurich, SwitzerlandTel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, Israel
Krivelevich, Michael
Lee, Choongbum
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, Cambridge, MA 02139 USATel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, Israel
Lee, Choongbum
Sudakov, Benny
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Dept Math, CH-8092 Zurich, SwitzerlandTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-6997801 Tel Aviv, Israel