Hamilton cycles in sparse locally connected graphs

被引:3
|
作者
van Aardt, Susan A. [1 ]
Burger, Alewyn P. [2 ]
Frick, Marietjie [3 ]
Thomassen, Carsten [4 ]
de Wet, Johan P. [3 ,5 ]
机构
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[5] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Locally connected; Hamiltonian; NP-complete; Polynomial time algorithm;
D O I
10.1016/j.dam.2018.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 288
页数:13
相关论文
共 50 条
  • [31] COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS
    Chakraborti, Debsoumya
    Frieze, Alan M.
    Hasabnis, Mihir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 51 - 64
  • [32] HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
    Balogh, Jozsef
    Bollobas, Bela
    Krivelevich, Michael
    Muller, Tobias
    Walters, Mark
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 1053 - 1072
  • [33] Hamilton cycles in circuit graphs of matroids
    Li, Ping
    Liu, Guizhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) : 654 - 659
  • [34] COMPATIBLE HAMILTON CYCLES IN DIRAC GRAPHS
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    COMBINATORICA, 2017, 37 (04) : 697 - 732
  • [35] Hamilton cycles in tensor product of graphs
    Discrete Math, 1-3 (1-13):
  • [36] LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS
    ALSPACH, B
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 25 - 36
  • [37] POWERS OF HAMILTON CYCLES IN PSEUDORANDOM GRAPHS
    Allen, Peter
    Bottcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    COMBINATORICA, 2017, 37 (04) : 573 - 616
  • [38] HAMILTON CYCLES AND PATHS IN BUTTERFLY GRAPHS
    WONG, SA
    NETWORKS, 1995, 26 (03) : 145 - 150
  • [39] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [40] Compatible Hamilton Cycles in Random Graphs
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (03) : 533 - 557