Hamilton cycles in sparse locally connected graphs

被引:3
|
作者
van Aardt, Susan A. [1 ]
Burger, Alewyn P. [2 ]
Frick, Marietjie [3 ]
Thomassen, Carsten [4 ]
de Wet, Johan P. [3 ,5 ]
机构
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[5] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Locally connected; Hamiltonian; NP-complete; Polynomial time algorithm;
D O I
10.1016/j.dam.2018.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 288
页数:13
相关论文
共 50 条
  • [1] On Hamilton cycles in e-locally connected graphs
    Orlovich, YL
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (04): : 40 - 44
  • [2] A NOTE ON CYCLES IN LOCALLY HAMILTONIAN AND LOCALLY HAMILTON-CONNECTED GRAPHS
    Tang, Long
    Vumar, Elkin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 77 - 84
  • [3] ON THE NUMBER OF HAMILTON CYCLES IN SPARSE RANDOM GRAPHS
    Glebov, Roman
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 27 - 42
  • [4] FINDING HAMILTON CYCLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (02) : 230 - 250
  • [5] Hamilton cycles in highly connected and expanding graphs
    Dan Hefetz
    Michael Krivelevich
    Tibor Szabó
    Combinatorica, 2009, 29 : 547 - 568
  • [6] HAMILTON CYCLES IN PLANAR LOCALLY FINITE GRAPHS
    Bruhn, Henning
    Yu, Xingxing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (04) : 1381 - 1392
  • [7] HAMILTON CYCLES IN HIGHLY CONNECTED AND EXPANDING GRAPHS
    Hefetz, Dan
    Krivelevich, Michael
    Szabo, Tibor
    COMBINATORICA, 2009, 29 (05) : 547 - 568
  • [8] Counting Hamilton cycles in sparse random directed graphs
    Ferber, Asaf
    Kwan, Matthew
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (04) : 592 - 603
  • [9] OPTIMAL PACKINGS OF HAMILTON CYCLES IN SPARSE RANDOM GRAPHS
    Krivelevich, Michael
    Samotij, Wojciech
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) : 964 - 982
  • [10] Hamilton cycles in 5-connected line graphs
    Kaiser, Tomas
    Vrana, Petr
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 924 - 947