A note on Riemann-Liouville processes

被引:0
|
作者
Li, Yuqiang [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai 500241, Peoples R China
关键词
Branching particle system; Functional limit theorem; Occupation time; Riemann-Liouville process; FRACTIONAL BROWNIAN-MOTION; SYSTEMS;
D O I
10.1016/j.jmaa.2018.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, it is proved that under certain conditions, Rieman-Liouville processes can arise from the temporal structures of the functional fluctuation limits of the occupation times of a type of spatial inhomogeneous branching particle system with infinite variances. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 505
页数:10
相关论文
共 50 条
  • [31] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [32] Generalizations of Riemann-Liouville fractional integrals and applications
    Lan, Kunquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12833 - 12870
  • [33] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [34] Riemann-Liouville q-Fractional Calculi
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 107 - 146
  • [35] On the "walking dead" derivatives: Riemann-Liouville and Caputo
    Ortigueira, Manuel D.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [36] Compactness of Riemann-Liouville fractional integral operators
    Lan, Kunquan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (84) : 1 - 15
  • [37] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236
  • [38] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [39] Approximation to Multifractional Riemann-Liouville Brownian Sheet
    Dai, Hongshuai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (07) : 1399 - 1410
  • [40] On a Riemann-Liouville generalized Taylor's formula
    Trujillo, JJ
    Rivero, M
    Bonilla, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (01) : 255 - 265