An adaptive neuro-fuzzy inference system for sleep spindle detection

被引:0
|
作者
Liang, Sheng-Fu [1 ]
Kuo, Chih-En [1 ]
Hu, Yu-Han [1 ]
Chen, Chun-Yu [1 ]
Li, Yu-Hung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat, Tainan 70101, Taiwan
关键词
Automatic sleep spindle detection; Adaptive neuro-fuzzy inference system; EEG; NETWORKS; EEG;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an adaptive neuro-fuzzy inference system (ANFIS) for sleep spindle detection was developed. Two input variables including teager energy operator (TEO) and sigma index analyses of the EEG signals were extracted. 1180 training samples (0.5 s) of 15 subjects were used to ANFIS training, include 397 spindle and 783 non-spindle waveform. Then the 1519 epochs (30s) of other 15 subjects were used to evaluate the performance of ANFIS. The overall sensitivity and specificity of the ANFIS are 94.09% and 96.76%, respectively. Although the overall false positive rate is 38.58%, spindle and non-spindle successful detection rate could almost reach 90% for each subject. This method can integrate with various PSG systems for sleep monitoring in cognitive enhancements or sleep efficiency.
引用
收藏
页码:369 / 373
页数:5
相关论文
共 50 条
  • [41] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [42] Adaptive Neuro-Fuzzy Inference System based Robotic Navigation
    Deshpande, Shantanu. U.
    Bhosale, Supal. S.
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2013, : 182 - 185
  • [43] Application of adaptive neuro-fuzzy inference system in field balancing
    Liu, Shi
    Ou, Liangsheng
    MANUFACTURING ENGINEERING AND MATERIALS HANDLING, 2005 PTS A AND B, 2005, 16 : 1359 - 1367
  • [44] Adaptive neuro-fuzzy inference system modeling of an induction motor
    Vasudevan, M
    Arumugam, R
    Paramasivam, S
    PEDS 2003 : FIFTH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 427 - 432
  • [45] FERROMAGNETIC HYSTERESIS MODELLING WITH ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Mordjaoui, Mourad
    Chabane, Mabrouk
    Boudjema, Bouzid
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2008, 59 (05): : 260 - 265
  • [46] Iris Authentication Using Adaptive Neuro-Fuzzy Inference System
    Shiju, N. P.
    Kannan, D.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1841 - 1854
  • [47] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [48] Adaptive Neuro-Fuzzy Inference System for Controlling a Steam Valve
    Al-Ridha, Moatasem Yaseen
    Al-Nima, Raid Rafi Omar
    Anaz, Ammar Sameer
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2019, : 156 - 161
  • [49] An adaptive neuro-fuzzy inference system for bridge risk assessment
    Wang, Ying-Ming
    Elhag, Taha M. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 3099 - 3106
  • [50] An Adaptive Neuro-Fuzzy Inference System for Islanding Detection in Wind Turbine as Distributed Generation
    Ghadimi, Noradin
    COMPLEXITY, 2015, 21 (01) : 10 - 20