Impact of the Hall Effect on High-Energy-Density Plasma Jets

被引:31
|
作者
Gourdain, P. -A. [1 ]
Seyler, C. E. [1 ]
机构
[1] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Plasma jets - Reynolds number;
D O I
10.1103/PhysRevLett.110.015002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Peclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it. DOI: 10.1103/PhysRevLett.110.015002
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Development of high-energy-density materials
    LIU JiPing
    LIU LiLi
    LIU XiaoBo
    Science China(Technological Sciences), 2020, 63 (02) : 195 - 213
  • [22] Demonstration of x-ray fluorescence imaging of a high-energy-density plasma
    MacDonald, M. J.
    Keiter, P. A.
    Montgomery, D. S.
    Biener, M. M.
    Fein, J. R.
    Fournier, K. B.
    Gamboa, E. J.
    Klein, S. R.
    Kuranz, C. C.
    LeFevre, H. J.
    Manuel, M. J. -E.
    Streit, J.
    Wan, W. C.
    Drake, R. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [23] HOLOGRAPHIC-INTERFEROMETRY OF A HIGH-ENERGY-DENSITY EXPLODING LITHIUM WIRE PLASMA
    ROCKETT, PD
    BACH, DR
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (04) : 2670 - 2674
  • [24] Experimental design to generate strong shear layers in a high-energy-density plasma
    Harding, E. C.
    Drake, R. P.
    Aglitskiy, Y.
    Gillespie, R. S.
    Grosskopf, M. J.
    Weaver, J. L.
    Velikovich, A. L.
    Visco, A.
    Ditmar, J. R.
    HIGH ENERGY DENSITY PHYSICS, 2010, 6 (02) : 179 - 184
  • [25] Interaction between pulsed high-energy-density dusty plasma and alumina ceramics
    Rong, C
    Zhang, JZ
    Liu, CZ
    Yang, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 195 (02): : 375 - 382
  • [26] High-energy-density plasma jet generated by laser-cone interaction
    Ke, Y. Z.
    Yang, X. H.
    Ma, Y. Y.
    Xu, B. B.
    Ge, Z. Y.
    Gan, L. F.
    Meng, L.
    Wang, S. W.
    Kawata, S.
    PHYSICS OF PLASMAS, 2018, 25 (04)
  • [27] Magnetically Driven Supersonic Plasma Jets in High Energy Density Experiments
    Suzuki-Vidal, F.
    Lebedev, S. V.
    Ciardi, A.
    Bland, S. N.
    Chittenden, J. P.
    Hall, G. N.
    Harvey-Thomson, A.
    Marocchino, A.
    Frank, A.
    Blackman, E. G.
    Stehle, C.
    Camenzind, M.
    PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: INTERACTIONS, PATTERNS, AND TURBULENCE, 2010, 1242 : 266 - +
  • [28] EVAPORATION OF METALS BY A HIGH-ENERGY-DENSITY SOURCE
    HAVAZELET, D
    BIRNBOIM, A
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1983, 16 (10) : 1917 - 1928
  • [29] A journey through high-energy-density physics
    Drake, R. Paul
    NUCLEAR FUSION, 2019, 59 (03)
  • [30] High-energy-density science blooms at NIF
    Kramer, David
    PHYSICS TODAY, 2017, 70 (02) : 33 - 35