COMMUTING PAIRS OF PATTERNS AND SYMMETRIC REALIZATIONS

被引:0
|
作者
Johnson, Charles R. [1 ]
Walch, Olivia [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
关键词
Commuting matrices; pattern; zero-nonzero pattern; symmetric realization; ratio equations; tree; tridiagonal pattern;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The patterns that commute with tridiagonal and with other tree patterns are studied. New "ratio" equations are given for the entries of a matrix that commutes with an irreducible tridiagonal one, and these equations imply that a pattern commuting with an irreducible tridiagonal one must be combinatorially symmetric. For an irreducible tridiagonal pattern and another pattern that commutes with it, it is shown that there is always a complex symmetric example of commutativity. However, there need not be a real symmetric commuting instance. An 8-by-8 example is given that settles a natural and long-standing question (whether real, commuting, combinatorially symmetric patterns may be realized by real symmetric matrices). Finally, similar results are given for other patterns, in place of irreducible tridiagonal, under additional hypotheses.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [11] ON PAIRS OF COMMUTING NILPOTENT MATRICES
    Kosir, Tomaz
    Oblak, Polona
    TRANSFORMATION GROUPS, 2009, 14 (01) : 175 - 182
  • [12] PAIRS OF PROJECTIONS AND COMMUTING ISOMETRIES
    De, Sandipan
    Sarkar, Jaydeb
    Aleman, Alexandru
    JOURNAL OF OPERATOR THEORY, 2024, 91 (01) : 261 - 294
  • [13] On pairs of commuting nilpotent matrices
    Tomaž Košir
    Polona Oblak
    Transformation Groups, 2009, 14 : 175 - 182
  • [14] Hyponormality for commuting pairs of operators
    Kim, Jaewoong
    Yoon, Jasang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1077 - 1090
  • [15] COMMUTING PAIRS IN A FINITE GROUP
    JOSEPH, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 102 - &
  • [16] Pairs of commuting isometrics, I
    Maji, Amit
    Sarkar, Jaydeb
    Sankar, T. R.
    STUDIA MATHEMATICA, 2019, 248 (02) : 171 - 189
  • [17] Renormalization of almost commuting pairs
    Denis Gaidashev
    Michael Yampolsky
    Inventiones mathematicae, 2020, 221 : 203 - 236
  • [18] Compatible pairs of commuting isometries
    Burdak, Zbigniew
    Kosiek, Marek
    Slocinski, Marek
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 479 : 216 - 259
  • [19] On a decomposition for pairs of commuting contractions
    Burdak, Zbigniew
    STUDIA MATHEMATICA, 2007, 181 (01) : 33 - 45
  • [20] Commuting charges and symmetric spaces
    Evans, JM
    Mountain, AJ
    PHYSICS LETTERS B, 2000, 483 (1-3) : 290 - 298