Programmable CRISPR-Cas transcriptional activation in bacteria

被引:61
|
作者
Ho, Hsing-, I [1 ]
Fang, Jennifer R. [2 ]
Cheung, Jacky [3 ]
Wang, Harris H. [1 ,4 ]
机构
[1] Columbia Univ, Dept Syst Biol, New York, NY 10025 USA
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[3] Columbia Univ, Dept Comp Sci & Biol, New York, NY USA
[4] Columbia Univ, Dept Pathol & Cell Biol, New York, NY 10025 USA
关键词
bacterial gene regulation; CRISPR tools; protein engineering; synthetic transcription activator; COLI RNA-POLYMERASE; ESCHERICHIA-COLI; OMEGA-SUBUNIT; GENE; DNA; MUTAGENESIS; IMPROVEMENT; EXPRESSION; DESIGN; SOXS;
D O I
10.15252/msb.20199427
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmable gene activation enables fine-tuned regulation of endogenous and synthetic gene circuits to control cellular behavior. While CRISPR-Cas-mediated gene activation has been extensively developed for eukaryotic systems, similar strategies have been difficult to implement in bacteria. Here, we present a generalizable platform for screening and selection of functional bacterial CRISPR-Cas transcription activators. Using this platform, we identified a novel CRISPR activator, dCas9-AsiA, that could activate gene expression by more than 200-fold across genomic and plasmid targets with diverse promoters after directed evolution. The evolved dCas9-AsiA can simultaneously mediate activation and repression of bacterial regulons inE. coli. We further identified hundreds of promoters with varying basal expression that could be induced by dCas9-AsiA, which provides a rich resource of genetic parts for inducible gene activation. Finally, we show that dCas9-AsiA can be ported to other bacteria of clinical and bioindustrial relevance, thus enabling bacterial CRISPRa in more application areas. This work expands the toolbox for programmable gene regulation in bacteria and provides a useful resource for future engineering of other bacterial CRISPR-based gene regulators.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] CRISPR-Cas changing biology?
    Baxter, Janella
    BIOLOGY & PHILOSOPHY, 2019, 34 (01)
  • [42] Staying on target with CRISPR-Cas
    Dana Carroll
    Nature Biotechnology, 2013, 31 : 807 - 809
  • [43] CRISPR-Cas Systems in Streptococci
    Gong, Tao
    Lu, Miao
    Zhou, Xuedong
    Zhang, Anqi
    Tang, Boyu
    Chen, Jiamin
    Jing, Meiling
    Li, Yuqing
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2019, 32 : 1 - 37
  • [44] CRISPR-Cas in its prime
    Zlotorynski, Eytan
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2019, 20 (12) : 718 - 719
  • [45] CRISPR-Cas Enzymes Preface
    Bailey, Scott
    CRISPR-CAS ENZYMES, 2019, 616 : XVII - XVIII
  • [46] Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus
    Liu, Tao
    Liu, Zhenzhen
    Ye, Qing
    Pan, Saifu
    Wang, Xiaodi
    Li, Yingjun
    Peng, Wenfang
    Liang, Yunxiang
    She, Qunxin
    Peng, Nan
    NUCLEIC ACIDS RESEARCH, 2017, 45 (15) : 8978 - 8992
  • [47] CRISPR-Cas systems in enterococci
    Cabral, Amanda Seabra
    Lacerda, Fernanda de Freitas
    Leite, Vitor Luis Macena
    de Miranda, Filipe Martire
    da Silva, Amanda Beiral
    dos Santos, Barbara Araujo
    Lima, Jailton Lobo da Costa
    Teixeira, Lucia Martins
    Neves, Felipe Piedade Goncalves
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2024, : 3945 - 3957
  • [48] Harvest time for CRISPR-Cas?
    Gross, Michael
    CURRENT BIOLOGY, 2016, 26 (20) : R903 - R905
  • [49] The CRISPR-Cas system in Enterobacteriaceae
    Medina-Aparicio, Liliana
    Davila, Sonia
    Rebollar-Flores, Javier E.
    Calva, Edmundo
    Hernandez-Lucas, Ismael
    PATHOGENS AND DISEASE, 2018, 76 (01):
  • [50] Special focus CRISPR-Cas
    Marchfelder, Anita
    RNA BIOLOGY, 2013, 10 (05) : 655 - 658