Fractional revival and association schemes

被引:10
|
作者
Chan, Ada [1 ]
Coutinho, Gabriel [2 ]
Tamon, Christino [3 ]
Vinet, Luc [4 ]
Zhan, Hanmeng [4 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON, Canada
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[3] Clarkson Univ, Dept Comp Sci, Potsdam, NY USA
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum walk; Association scheme; Bose-Mesner algebra; Hamming scheme; Krawtchouk polynomials;
D O I
10.1016/j.disc.2020.112018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional revival occurs between two vertices in a graph if a continuous-time quantum walk unitarily maps the characteristic vector of one vertex to a superposition of the characteristic vectors of the two vertices. This phenomenon is relevant in quantum information in particular for entanglement generation in spin networks. We study fractional revival in graphs whose adjacency matrices belong to the Bose-Mesner algebra of association schemes. A specific focus is a characterization of balanced fractional revival (which corresponds to maximal entanglement) in graphs that belong to the Hamming scheme. Our proofs exploit the intimate connections between algebraic combinatorics and orthogonal polynomials. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] ECONOMICAL IMPLICIT SCHEMES (METHOD OF FRACTIONAL STEPS)
    IANENKO, NN
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (05): : 1034 - 1036
  • [42] Multicolumn fractional distillation (principle and process schemes)
    Ajnshtejn, V.G.
    Zakharov, M.K.
    Khimicheskaya Promyshlennost', 2001, (06): : 39 - 45
  • [43] numerical schemes to solve fractional diabetes models
    Abou Hasan, Muner M.
    Alghanmi, Ahlam M.
    Al Ali, Hannah
    Mukandavire, Zindoga
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 29 - 40
  • [44] Stable Difference Schemes for Fractional Parabolic PDE
    Ashyralyev, Allaberen
    Cakir, Zafer
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [45] Milstein's type schemes for fractional SDEs
    Gradinaru, Mihai
    Nourdin, Ivan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (04): : 1085 - 1098
  • [46] New Control Schemes for Fractional Chaos Synchronization
    Ouannas, Adel
    Grassi, Giuseppe
    Azar, Ahmad Taher
    Singh, Shikha
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 52 - 63
  • [47] The Order of Convergence of Difference Schemes for Fractional Equations
    Liu, Ru
    Li, Miao
    Piskarev, Sergey
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (06) : 754 - 769
  • [48] Semidefinite Programs and Association Schemes
    M. X. Goemans
    F. Rendl
    Computing, 1999, 63 : 331 - 340
  • [49] On the characters of nilpotent association schemes
    Bagherian, J.
    DISCRETE MATHEMATICS, 2013, 313 (10) : 1112 - 1118
  • [50] Clifford theory for association schemes
    Hanaki, Akihide
    JOURNAL OF ALGEBRA, 2009, 321 (06) : 1686 - 1695