Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries

被引:13
|
作者
Medina, P. A. [1 ,2 ]
Zheng, H. [3 ]
Fahlman, B. D. [1 ,2 ]
Annamalai, P. [3 ]
Swartbooi, A. [3 ]
le Roux, L. [3 ]
Mathe, M. K. [3 ]
机构
[1] Cent Michigan Univ, Dept Chem, Mt Pleasant, MI 48858 USA
[2] Cent Michigan Univ, Sci Adv Mat Program, Mt Pleasant, MI 48858 USA
[3] Council Sci & Ind Res CSIR, Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
来源
SPRINGERPLUS | 2015年 / 4卷
基金
美国国家科学基金会;
关键词
LIBs; Li4Ti5O12; Graphene nanoribbons; Anode; Capacity; ELECTROCHEMICAL PROPERTIES; GRAPHENE; INSERTION; GRAPHITE; STORAGE;
D O I
10.1186/s40064-015-1438-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 subset of are 206.5, 200.9, 188, 178.1 and 142.3 mAh.g(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh.g(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Omega) compared with LTO (108.05 Omega), and higher exchange current density (j = 1.1 x 10(-3) mA cm(-2))-about 20 times than those of the LTO (j = 2.38 x 10(-4) mA cm(-2)).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Electrochemical examination of core-shell mediated Li+ transport in Li4Ti5O12 anodes of lithium ion batteries
    Crain, D. J.
    Zheng, J. P.
    Roy, D.
    SOLID STATE IONICS, 2013, 240 : 10 - 18
  • [42] Li4Ti5O12/Ti4O7/carbon nanotubes composite anode material for lithium-ion batteries
    Zhang, Xiaoyan
    Xu, Wen
    Li, Xing
    Zhong, Xiaoxi
    Liu, Wanying
    Lin, Yuanhua
    Xia, Ruochen
    MICRO & NANO LETTERS, 2018, 13 (07): : 915 - 918
  • [43] Synthesis and characterization Li4Ti5O12 for Li-ion batteries
    Yilmaz, Mehmet
    Aydin, Serdar
    Turgut, Guven
    Yurtcan, Mustafa Tolga
    Demir, Yasar
    Ertugrul, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 28 (01): : 411 - 416
  • [44] Preparation of Carbon Nanotube Coated Li4Ti5O12 Nanosheets Heterostructure as Ultrastable Anodes for Lithium-Ion Batteries
    Jiao, Wenling
    Chen, Chen
    Liang, Chongyun
    Che, Renchao
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6352 - 6360
  • [45] Study of the Electrochemical Properties of Li4Ti5O12 Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries
    Choi, Byung-hyun
    Lee, Dae-jin
    Ji, Mi-jung
    Kwon, Young-Jin
    Park, Sung-Tae
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2010, 47 (06) : 638 - 642
  • [46] In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries
    Sun, Lingna
    Xiong, Wei
    Mi, Hongwei
    Li, Yongliang
    Zhuo, Haitao
    Zhang, Qianling
    He, Chuanxin
    Liu, Jianhong
    ELECTROCHIMICA ACTA, 2017, 230 : 508 - 513
  • [47] Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries
    Shi, Ying
    Wen, Lei
    Li, Feng
    Cheng, Hui-Ming
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8610 - 8617
  • [48] Mesoporous Hierarchical Structure of Li4Ti5O12/Graphene with High Electrochemical Performance in Lithium-Ion Batteries
    Yan, Hong
    Yao, Wei
    Fan, Runze
    Zhang, Yu
    Luo, Juhua
    Xu, Jianguang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 11360 - 11366
  • [49] Temperature effect on spinel Li4Ti5O12 as anode materials for lithium ion batteries
    Zhang, Zhenwei
    Cao, Liyun
    Huang, Jianfeng
    Wang, Dunqiang
    Meng, Yan
    Cai, Yingjun
    ELECTROCHIMICA ACTA, 2013, 88 : 443 - 446
  • [50] Research on carbon-coated Li4Ti5O12 material for lithium ion batteries
    Kim, Ju Bin
    Kim, Dong Jin
    Chung, Kyung Yoon
    Byun, Dongjin
    Cho, Byung Won
    PHYSICA SCRIPTA, 2010, T139