Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques

被引:118
|
作者
Sanikhani, Hadi [2 ]
Kisi, Ozgur [1 ]
Nikpour, Mohammad Reza [3 ]
Dinpashoh, Yagob [3 ]
机构
[1] Canik Basari Univ, Dept Civil Engn, Architectural & Engn Fac, Samsun, Turkey
[2] Islamic Azad Univ, Tabriz Branch, Tabriz, Iran
[3] Univ Tabriz, Fac Agr, Water Engn Dept, Tabriz, Iran
关键词
Adaptive neuro-fuzzy inference system; Grid partitioning; Subtractive clustering; Evaporation modeling; REFERENCE EVAPOTRANSPIRATION; NETWORK; MODEL; EQUATIONS; SYSTEMS;
D O I
10.1007/s11269-012-0148-4
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the ability of two different adaptive neuro-fuzzy inference systems (ANFIS) including grid partitioning (GP) and subtractive clustering (SC), in modeling daily pan evaporation (E-pan). The daily climatic variables, air temperature, wind speed, solar radiation and relative humidity of two automated weather stations, San Francisco and San Diego, in California State are used for pan evaporation estimation. The results of ANFIS-GP and ANFIS-SC models are compared with multivariate non-linear regression (MNLR), artificial neural network (ANN), Stephens-Stewart (SS) and Penman models. Determination coefficient (R-2), root mean square error (RMSE) and mean absolute relative error (MARE) are used to evaluate the performance of the applied models. Comparison of results indicates that both ANFIS-GP and ANFIS-SC are superior to the MNLR, ANN, SS and Penman in modeling E-pan. The results also show that the difference between the performances of ANFIS-GP and ANFIS-SC is not significant in evaporation estimation. It is found that two different ANFIS models could be employed successfully in modeling evaporation from available climatic data.
引用
收藏
页码:4347 / 4365
页数:19
相关论文
共 50 条
  • [22] Estimation of pile group scour using adaptive neuro-fuzzy approach
    Bateni, S. M.
    Jeng, D.-S.
    OCEAN ENGINEERING, 2007, 34 (8-9) : 1344 - 1354
  • [23] Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
    Shiri, J.
    Dierickx, W.
    Baba, A. Pour-Ali
    Neamati, S.
    Ghorbani, M. A.
    HYDROLOGY RESEARCH, 2011, 42 (06): : 491 - 502
  • [24] Estimation of train speed via neuro-fuzzy techniques
    Colla, V
    Vannucci, M
    Allotta, B
    Malvezzi, M
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 497 - 503
  • [25] ADAPTIVE NEURO-FUZZY APPROACH FOR SAND PERMEABILITY ESTIMATION
    Sezer, Alper
    Goktepe, Burak A.
    Altun, Selim
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (02): : 231 - 238
  • [26] Attitude estimation using a Neuro-Fuzzy tuning based adaptive Kalman filter
    Ibarra-Bonilla, Mariana N.
    Jorge Escamilla-Ambrosio, P.
    Manuel Ramirez-Cortes, Juan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (02) : 479 - 488
  • [27] Estimation of dew point temperature using neuro-fuzzy and neural network techniques
    Kisi, Ozgur
    Kim, Sungwon
    Shiri, Jalal
    THEORETICAL AND APPLIED CLIMATOLOGY, 2013, 114 (3-4) : 365 - 373
  • [28] Estimation of dew point temperature using neuro-fuzzy and neural network techniques
    Ozgur Kisi
    Sungwon Kim
    Jalal Shiri
    Theoretical and Applied Climatology, 2013, 114 : 365 - 373
  • [29] Estimation of Leaf Wetness Duration Using Adaptive Neuro-Fuzzy Inference Systems
    Ghobakhlou, A.
    Amir, F.
    Whalley, J.
    Sallis, P.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 585 - 591
  • [30] On-line performance estimation and condition monitoring using neuro-fuzzy techniques
    Uytterhoeven, G
    Renders, JM
    de Viron, F
    De Vlaminck, M
    Fantoni, PF
    ON-LINE FAULT DETECTION AND SUPERVISION IN THE CHEMICAL PROCESS INDUSTRIES 1998, 1998, : 335 - 340