Adaptive Unsupervised Feature Selection With Structure Regularization

被引:199
|
作者
Luo, Minnan [1 ]
Nie, Feiping [2 ]
Chang, Xiaojun [3 ]
Yang, Yi [4 ]
Hauptmann, Alexander G. [3 ]
Zheng, Qinghua [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Comp Sci, SPKLSTN Lab, Xian 710049, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Ctr OPTical Imagery Anal & Learning, Xian 710000, Shaanxi, Peoples R China
[3] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[4] Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
关键词
Adaptive neighbors; dimension reduction; local linear embedding; structure regularization; unsupervised feature selection; NONLINEAR DIMENSIONALITY REDUCTION; CLASSIFICATION; ALGORITHM;
D O I
10.1109/TNNLS.2017.2650978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is one of the most important dimension reduction techniques for its efficiency and interpretation. Since practical data in large scale are usually collected without labels, and labeling these data are dramatically expensive and time-consuming, unsupervised feature selection has become a ubiquitous and challenging problem. Without label information, the fundamental problem of unsupervised feature selection lies in how to characterize the geometry structure of original feature space and produce a faithful feature subset, which preserves the intrinsic structure accurately. In this paper, we characterize the intrinsic local structure by an adaptive reconstruction graph and simultaneously consider its multiconnected-components (multi-cluster) structure by imposing a rank constraint on the corresponding Laplacian matrix. To achieve a desirable feature subset, we learn the optimal reconstruction graph and selective matrix simultaneously, instead of using a predetermined graph. We exploit an efficient alternative optimization algorithm to solve the proposed challenging problem, together with the theoretical analyses on its convergence and computational complexity. Finally, extensive experiments on clustering task are conducted over several benchmark data sets to verify the effectiveness and superiority of the proposed unsupervised feature selection algorithm.
引用
收藏
页码:944 / 956
页数:13
相关论文
共 50 条
  • [31] Multi-level regularization-based unsupervised multi-view feature selection with adaptive graph learning
    Chen, Tingjian
    Zeng, Ying
    Yuan, Haoliang
    Zhong, Guo
    Lai, Loi Lei
    Tang, Yuan Yan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (05) : 1695 - 1709
  • [32] Unsupervised feature selection based on bipartite graph and low-redundant regularization
    Xiang, Longyan
    Chen, Hongmei
    Yin, Tengyu
    Horng, Shi-Jinn
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [33] Structural regularization based discriminative multi-view unsupervised feature selection
    Zhou, Shixuan
    Song, Peng
    Yu, Yanwei
    Zheng, Wenming
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [34] Unsupervised Feature Selection via Adaptive Graph Learning and Constraint
    Zhang, Rui
    Zhang, Yunxing
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 1355 - 1362
  • [35] Generalized Uncorrelated Regression with Adaptive Graph for Unsupervised Feature Selection
    Li, Xuelong
    Zhang, Han
    Zhang, Rui
    Liu, Yun
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (05) : 1587 - 1595
  • [36] A general adaptive unsupervised feature selection with auto-weighting
    Liao, Huming
    Chen, Hongmei
    Yin, Tengyu
    Yuan, Zhong
    Horng, Shi-Jinn
    Li, Tianrui
    NEURAL NETWORKS, 2025, 181
  • [37] A new adaptive elastic loss for robust unsupervised feature selection
    Pan, Jinyan
    Xie, Youwei
    Wang, Xinjing
    Zhang, Haifeng
    Cao, Chao
    Gao, Yunlong
    NEUROCOMPUTING, 2024, 601
  • [38] Joint adaptive manifold and embedding learning for unsupervised feature selection
    Wu, Jian-Sheng
    Song, Meng-Xiao
    Min, Weidong
    Lai, Jian-Huang
    Zheng, Wei-Shi
    PATTERN RECOGNITION, 2021, 112
  • [39] UNSUPERVISED FEATURE SELECTION BY NONNEGATIVE SPARSITY ADAPTIVE SUBSPACE LEARNING
    Zhou, Nan
    Cheng, Hong
    Zheng, Ya-Li
    He, Liang-Tian
    Pedrycz, Witold
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 18 - 24
  • [40] Unsupervised feature selection based on matrix factorization and adaptive graph
    Cao L.
    Lin X.
    Su S.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (08): : 2197 - 2208