A mathematical method for parameter estimation in a tumor growth model

被引:4
|
作者
Knopoff, D. [1 ,2 ]
Fernandez, D. [2 ]
Torres, G. [2 ]
Turner, C. [2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10100 Turin, Italy
[2] Univ Nacl Cordoba, CIEM CONICET, Fac Matemat Astron & Fis, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2017年 / 36卷 / 01期
关键词
Avascular tumor; PDE-constrained optimization; Inverse problem; Mathematical modeling; MULTICELLULAR SPHEROIDS; CANCER; CELLS; CONVERGENCE; DIFFUSION; NECROSIS; GLUCOSE;
D O I
10.1007/s40314-015-0259-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a methodology for estimating the effectiveness of a drug, an unknown parameter that appears on an avascular, spheric tumor growth model formulated in terms of a coupled system of partial differential equations (PDEs). This model is formulated considering a continuum of live cells that grow by the action of a nutrient. Volume changes occur due to cell birth and death, describing a velocity field. The model assumes that when the drug is applied externally, it diffuses and kills cells. The effectiveness of the drug is obtained by solving an inverse problem which is a PDE-constrained optimization problem. We define suitable objective functions by fitting the modeled and the observed tumor radius and the inverse problem is solved numerically using a Pattern Search method. It is observed that the effectiveness of the drug is retrieved with a reasonable accuracy. Experiments with noised data are also considered and the results are compared and contrasted.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [31] Parameter Estimation in the Mathematical Model of Bacterial Colony Patterns in Symmetry Domain
    Brociek, Rafal
    Wajda, Agata
    Capizzi, Giacomo
    Slota, Damian
    SYMMETRY-BASEL, 2023, 15 (04):
  • [32] State and Parameter Estimation of a Mathematical Carcinoma Model under Chemotherapeutic Treatment
    Siket, Mate
    Eigner, Gyorgy
    Drexler, Daniel Andras
    Rudas, Imre
    Kovacs, Levente
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [33] A Hierarchical Gravity Model with Spatial Correlation: Mathematical Formulation and Parameter Estimation
    de Grange, Louis
    Ibeas, Angel
    Gonzalez, Felipe
    NETWORKS & SPATIAL ECONOMICS, 2011, 11 (03): : 439 - 463
  • [34] Parameter Estimation and Sensitivity Analysis for a Mathematical Model with Time Delays of Leukemia
    Candea, Doina
    Halanay, Andrei
    Radulescu, Rodica
    Talmaci, Rodica
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [35] A Hierarchical Gravity Model with Spatial Correlation: Mathematical Formulation and Parameter Estimation
    Louis de Grange
    Angel Ibeas
    Felipe González
    Networks and Spatial Economics, 2011, 11 : 439 - 463
  • [36] Estimation of parameters for a mathematical model of growth hormone secretion
    Brown, D
    Stephens, EA
    Smith, RG
    Li, G
    Leng, G
    JOURNAL OF NEUROENDOCRINOLOGY, 2004, 16 (11) : 936 - 946
  • [37] Bifurcation analysis of a delayed mathematical model for tumor growth
    Khajanchi, Subhas
    CHAOS SOLITONS & FRACTALS, 2015, 77 : 264 - 276
  • [38] LINEAR FEEDBACK CONTROL FOR A MATHEMATICAL MODEL OF TUMOR GROWTH
    Silveira, Jean Carlos
    Stiegelmeier, Elenice Weber
    Feldmann, Gerson
    Rafikov, Marat
    BIOMAT 2006, 2007, : 193 - 202
  • [39] A mathematical model for tumor growth and treatment using virotherapy
    Abernathy, Zachary
    Abernathy, Kristen
    Stevens, Jessica
    AIMS MATHEMATICS, 2020, 5 (05): : 4136 - 4150
  • [40] A Proposed Mathematical Model of Tumor Growth and Host Consciousness
    Kozlowski, Miroslaw
    Marciak-Kozlowska, Janina
    NEUROQUANTOLOGY, 2011, 9 (04) : 640 - 648