A mathematical method for parameter estimation in a tumor growth model

被引:4
|
作者
Knopoff, D. [1 ,2 ]
Fernandez, D. [2 ]
Torres, G. [2 ]
Turner, C. [2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10100 Turin, Italy
[2] Univ Nacl Cordoba, CIEM CONICET, Fac Matemat Astron & Fis, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2017年 / 36卷 / 01期
关键词
Avascular tumor; PDE-constrained optimization; Inverse problem; Mathematical modeling; MULTICELLULAR SPHEROIDS; CANCER; CELLS; CONVERGENCE; DIFFUSION; NECROSIS; GLUCOSE;
D O I
10.1007/s40314-015-0259-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a methodology for estimating the effectiveness of a drug, an unknown parameter that appears on an avascular, spheric tumor growth model formulated in terms of a coupled system of partial differential equations (PDEs). This model is formulated considering a continuum of live cells that grow by the action of a nutrient. Volume changes occur due to cell birth and death, describing a velocity field. The model assumes that when the drug is applied externally, it diffuses and kills cells. The effectiveness of the drug is obtained by solving an inverse problem which is a PDE-constrained optimization problem. We define suitable objective functions by fitting the modeled and the observed tumor radius and the inverse problem is solved numerically using a Pattern Search method. It is observed that the effectiveness of the drug is retrieved with a reasonable accuracy. Experiments with noised data are also considered and the results are compared and contrasted.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [1] A mathematical method for parameter estimation in a tumor growth model
    D. Knopoff
    D. Fernández
    G. Torres
    C. Turner
    Computational and Applied Mathematics, 2017, 36 : 733 - 748
  • [2] Organization of the Dynamics in a Parameter Plane of a Tumor Growth Mathematical Model
    Stegemann, Cristiane
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (02):
  • [3] Parameter estimation in a Gompertzian stochastic model for tumor growth
    Ferrante, L
    Bompadre, S
    Possati, L
    Leone, L
    BIOMETRICS, 2000, 56 (04) : 1076 - 1081
  • [4] Comparing Methods for Parameter Estimation of the Gompertz Tumor Growth Model
    Patmanidis, Spyridon
    Charalampidis, Alexandros C.
    Kordonis, Ioannis
    Mitsis, Georgios D.
    Papavassilopoulos, George P.
    IFAC PAPERSONLINE, 2017, 50 (01): : 12203 - 12209
  • [5] JOINT STATE-PARAMETER ESTIMATION FOR TUMOR GROWTH MODEL
    Collin, Annabelle
    Kritter, Thibaut
    Poignard, Clair
    Saut, Olivier
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (02) : 355 - 377
  • [6] MATHEMATICAL MODEL AND ITS FAST NUMERICAL METHOD FOR THE TUMOR GROWTH
    Lee, Hyun Geun
    Kim, Yangjin
    Kim, Junseok
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (06) : 1173 - 1187
  • [7] Mathematical model for tumor growth
    Ji, Jiang
    Tu, Guangde
    Zou, Mei
    CANCER RESEARCH, 2010, 70
  • [8] Parameter and State Estimation of a Mathematical Model of Carbohydrate Intake
    Olay-Blanco, A.
    Rodriguez-Linan, A.
    Quiroz, G.
    IFAC PAPERSONLINE, 2018, 51 (13): : 73 - 78
  • [9] DYNAMICS OF TUMOR GROWTH - A MATHEMATICAL MODEL
    SUMMERS, WC
    GROWTH, 1966, 30 (03) : 333 - &
  • [10] A method for model identification and parameter estimation
    Bambach, M.
    Heinkenschloss, M.
    Herty, M.
    INVERSE PROBLEMS, 2013, 29 (02)