Effects of plasmon mode on crystallization behaviors by plasmonic trapping

被引:0
|
作者
Cheng, An-Chieh [1 ,2 ,3 ]
Pin, Christophe [1 ]
Sugiyama, Teruki [2 ,3 ]
Sasaki, Keiji [1 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Kita Ku, Kita 20 Jo Nishi 10 Chome, Sapporo, Hokkaido 0010020, Japan
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, 1001 Univ Rd, Hsinchu 30010, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, 1001 Univ Rd, Hsinchu 30010, Taiwan
关键词
plasmonic trapping; plasmon mode; crystallization; polymorphic transformation; LASER-INDUCED NUCLEATION; L-PHENYLALANINE; SODIUM-CHLORATE; CRYSTAL; GLYCINE; GROWTH;
D O I
10.1117/12.2659055
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We design and fabricate triangular trimer gold nanostructures with two different edge lengths and investigate effects of plasmon modes on the crystallization behaviors induced by plasmonic optical trapping. The location of the enhanced electric field depends on the edge lengths (170 and 230 nm) of the triangular trimer. The crystallization of NaClO3 was induced by the 1064-nm laser irradiation on a single trimer structure. The generated crystal is attributed to be a metastable crystal with birefringence. Polymorphic transformation occurs in the case of continuous laser irradiation onto a 230 nm trimer, but intriguingly never in the case of a 170 nm trimer. These results will contribute to the understanding of the crystallization mechanism of NaClO3 by plasmonic trapping and give a novel insight to polymorphic transformation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Fabricating two-dimensional plasmonic photonic crystals for the modulation of nanocavity plasmon mode
    Meng, Qiushi
    Zhang, Yao
    Cai, Hongbing
    Liao, Yuan
    Zhang, Yang
    Wang, Xiaoping
    Okamoto, Takayuki
    Dong, Zhenchao
    NANOSCALE, 2016, 8 (45) : 18855 - 18859
  • [22] Strong coupling between plasmonic Fabry-Perot cavity mode and magnetic plasmon
    Xi, Zheng
    Lu, Yonghua
    Yu, Wenhai
    Yao, Peijun
    Wang, Pei
    Ming, Hai
    OPTICS LETTERS, 2013, 38 (10) : 1591 - 1593
  • [23] Plasmonic Trapping and Antitrapping of Nanoparticles
    Ivinskaya, A.
    Petrov, M. I.
    Bogdanov, A. A.
    Ginzburg, P.
    Shalin, A. S.
    2017 11TH INTERNATIONAL CONGRESS ON ENGINEERED MATERIALS PLATFORMS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2017, : 310 - 311
  • [24] Light Trapping in Plasmonic Photovoltaics
    Ferry, Vivian E.
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 52 - 53
  • [25] Plasmonic trapping of nanoparticles by metaholograms
    Rui, Guanghao
    Ma, Yanbao
    Gu, Bing
    Zhan, Qiwen
    Cui, Yiping
    SCIENTIFIC REPORTS, 2017, 7
  • [26] Plasmonic trapping of nanoparticles by metaholograms
    Guanghao Rui
    Yanbao Ma
    Bing Gu
    Qiwen Zhan
    Yiping Cui
    Scientific Reports, 7
  • [27] Plasmonic Trapping with a Gold Nanopillar
    Wang, Kai
    Crozier, Kenneth B.
    CHEMPHYSCHEM, 2012, 13 (11) : 2639 - 2648
  • [28] Trapping light in plasmonic waveguides
    Park, Junghyun
    Kim, Kyoung-Youm
    Lee, Il-Min
    Na, Hyunmin
    Lee, Seung-Yeol
    Lee, Byoungho
    OPTICS EXPRESS, 2010, 18 (02): : 598 - 623
  • [29] Light Trapping in Plasmonic Nanovessels
    Ai, Bin
    Gu, Panpan
    Wang, Zengyao
    Moehwald, Helmuth
    Wang, Limin
    Zhang, Gang
    ADVANCED OPTICAL MATERIALS, 2017, 5 (05):
  • [30] Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine
    Cheng, Sixue
    McKenna, Gregory B.
    MOLECULAR PHARMACEUTICS, 2019, 16 (02) : 856 - 866