The free energy principle induces neuromorphic development

被引:9
|
作者
Fields, Chris [1 ,2 ]
Friston, Karl [3 ]
Glazebrook, James F. [4 ,5 ]
Levin, Michael [2 ,6 ]
Marciano, Antonino [7 ,8 ,9 ]
机构
[1] 23 Rue Lavandieres, F-11160 Caunes Minervois, France
[2] Tufts Univ, Allen Discovery Ctr, Medford, MA 02155 USA
[3] UCL, Wellcome Ctr Human Neuroimaging, London WC1N 3AR, England
[4] Eastern Illinois Univ, Dept Math & Comp Sci, Charleston, IL 61920 USA
[5] Univ Illinois, Adjunct Fac, Dept Math, Urbana, IL 61801 USA
[6] Harvard Univ, Wyss Inst Biolog Inspired Engn, Wyss Inst Biolog Inspired Engn, Boston, MA 02115 USA
[7] Fudan Univ, Ctr Field Theory & Particle Phys, Dept Phys, Shanghai, Peoples R China
[8] Lab Nazl Frascati INFN, Rome, Italy
[9] INFN Sez Roma Tor Vergata, I-00133 Rome, Italy
来源
基金
欧盟地平线“2020”;
关键词
Bayesian active inference; generative model; quantum reference frame; tomographic measurement; topological quantum neural network; STATE-SUM INVARIANTS; GRID CELLS; INFORMATION; COMPUTATION; HIPPOCAMPUS; SEQUENCES; MEMORY; GROWTH; EMERGENCE; COGNITION;
D O I
10.1088/2634-4386/aca7de
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We show how any finite physical system with morphological, i.e. three-dimensional embedding or shape, degrees of freedom and locally limited free energy will, under the constraints of the free energy principle, evolve over time towards a neuromorphic morphology that supports hierarchical computations in which each 'level' of the hierarchy enacts a coarse-graining of its inputs, and dually, a fine-graining of its outputs. Such hierarchies occur throughout biology, from the architectures of intracellular signal transduction pathways to the large-scale organization of perception and action cycles in the mammalian brain. The close formal connections between cone-cocone diagrams (CCCD) as models of quantum reference frames on the one hand, and between CCCDs and topological quantum field theories on the other, allow the representation of such computations in the fully-general quantum-computational framework of topological quantum neural networks.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Piezotronic neuromorphic devices: principle,manufacture, and applications
    Xiangde Lin
    Zhenyu Feng
    Yao Xiong
    Wenwen Sun
    Wanchen Yao
    Yichen Wei
    Zhong Lin Wang
    Qijun Sun
    InternationalJournalofExtremeManufacturing, 2024, 6 (03) : 367 - 390
  • [42] The free-energy principle: a unified brain theory?
    Friston, Karl J.
    NATURE REVIEWS NEUROSCIENCE, 2010, 11 (02) : 127 - 138
  • [43] A Technical Critique of Some Parts of the Free Energy Principle
    Biehl, Martin
    Pollock, Felix A.
    Kanai, Ryota
    ENTROPY, 2021, 23 (03) : 1 - 24
  • [44] The free energy principle for action and perception: A mathematical review
    Buckley, Christopher L.
    Kim, Chang Sub
    McGregor, Simon
    Seth, Anil K.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2017, 81 : 55 - 79
  • [45] Self-supervision, normativity and the free energy principle
    Jakob Hohwy
    Synthese, 2021, 199 : 29 - 53
  • [46] Applying the Free Energy Principle to Complex Adaptive Systems
    Badcock, Paul B.
    Ramstead, Maxwell J. D.
    Sheikhbahaee, Zahra
    Constant, Axel
    ENTROPY, 2022, 24 (05)
  • [47] Self-supervision, normativity and the free energy principle
    Hohwy, Jakob
    SYNTHESE, 2021, 199 (1-2) : 29 - 53
  • [48] The Problem of Meaning: The Free Energy Principle and Artificial Agency
    Kiverstein, Julian
    Kirchhoff, Michael D.
    Froese, Tom
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [49] Is Free Energy an Organizational Principle in Spiking Neural Networks?
    Fernandez-Leon, Jose A.
    Arlego, Marcelo
    Acosta, Gerardo G.
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 79 - 90
  • [50] Enhanced Saliency Prediction via Free Energy Principle
    Ye, Peng
    Wang, Yongfang
    Xia, Yumeng
    An, Ping
    Zhang, Jian
    DIGITAL TV AND MULTIMEDIA COMMUNICATION, 2019, 1009 : 31 - 44