An intersection theorem for set-valued mappings

被引:4
|
作者
Agarwal, Ravi P. [1 ]
Balaj, Mircea [2 ]
O'Regan, Donal [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] Univ Oradea, Dept Math, Oradea, Romania
[3] Natl Univ Ireland, Dept Math, Galway, Ireland
关键词
intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; QUASI COMPLEMENTARITY-PROBLEMS; TOPOLOGICAL VECTOR-SPACES; EQUILIBRIUM PROBLEM; CONVEX SPACES; INEQUALITIES; EXISTENCE;
D O I
10.1007/s10492-013-0013-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a nonempty convex set X in a locally convex Hausdorff topological vector space, a nonempty set Y and two set-valued mappings T: X a double dagger parts per thousand X, S: Y a double dagger parts per thousand X we prove that under suitable conditions one can find an x a X which is simultaneously a fixed point for T and a common point for the family of values of S. Applying our intersection theorem, we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 50 条
  • [41] Set-valued α-almost convex mappings
    Llorens-Fuster, E
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) : 698 - 712
  • [42] On set-valued mappings with starlike graphs
    R. A. Khachatryan
    Journal of Contemporary Mathematical Analysis, 2012, 47 : 28 - 44
  • [43] Insertion of continuous set-valued mappings
    Gutev, Valentin
    TOPOLOGY AND ITS APPLICATIONS, 2023, 340
  • [44] On Subregularity Properties of Set-Valued Mappings
    Apetrii, Marius
    Durea, Marius
    Strugariu, Radu
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) : 93 - 126
  • [45] Fuzzy integrals for set-valued mappings
    Cho, SJ
    Lee, BS
    Lee, GM
    Kim, DS
    FUZZY SETS AND SYSTEMS, 2001, 117 (03) : 333 - 337
  • [46] Continuous selection for set-valued mappings
    Tsar'kov, I. G.
    IZVESTIYA MATHEMATICS, 2017, 81 (03) : 645 - 669
  • [47] Minimax inequalities for set-valued mappings
    Zhang, Y.
    Li, S. J.
    Li, M. H.
    POSITIVITY, 2012, 16 (04) : 751 - 770
  • [48] On the ∈-variational principle for set-valued mappings
    Li, S. J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (10) : 1627 - 1632
  • [49] A NOTE ON CONNECTED SET-VALUED MAPPINGS
    CORREA, R
    HIRIARTURRUTY, JB
    PENOT, JP
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5C (01): : 357 - 366
  • [50] MINIMAX PROBLEMS FOR SET-VALUED MAPPINGS
    Zhang, Y.
    Li, S. J.
    Zhu, S. K.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (02) : 239 - 253