Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices

被引:1
|
作者
Chooi, Wai Leong [1 ]
Kwa, KiamHeong [1 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 05期
关键词
Classical adjoint commuting; determinant preserving; Kronecker product; Hermitian matrix; TENSOR-PRODUCTS;
D O I
10.1080/03081087.2018.1519010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let psi :circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni be a linear map on the Kronecker product of spaces of Hermitian matrices H-ni of size n(i) >= 3. (If d= 1, we identify circle times(d)(i=1) H-ni with H-ni.) We establish a condition under which psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) if and only if det (psi(circle times(d )(i=1)A(i))) = det (circle times(d )(i=1)A(i)) for all circle times(d )(i=1)A(i) is an element of circle times(d)(i=1) H-ni. Then for d is an element of {1,2}, we apply this fact to characterize maps psi : circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni such that psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) with some mild conditions.
引用
收藏
页码:869 / 885
页数:17
相关论文
共 50 条