Fractional p-Laplacian Equations with Subcritical and Critical Exponential Growth Without the Ambrosetti-Rabinowitz Condition

被引:13
|
作者
Pei, Ruichang [1 ]
机构
[1] Tianshui Normal Univ, Dept Math, Tianshui 741001, Peoples R China
关键词
Fractional p-Laplacian problems; subcritical or critical exponential growth; mountain pass theorem; without the (AR) condition; ELLIPTIC-EQUATIONS; SEQUENCES;
D O I
10.1007/s00009-018-1115-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to investigate the existence of nontrivial solutions to a class of quasilinear non-local problems which do not satisfy the Ambrosetti-Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of subcritical or critical exponential growth (subcritical polynomial growth) at infinity. Some existence results for nontrivial solution are obtained using mountain pass theorem combined with the fractional Moser-Trudinger inequality.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition
    Carvalho, M. L. M.
    Goncalves, Jose V. A.
    da Silva, E. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 466 - 483
  • [42] A non-local p-Kirchhoff critical problem without the Ambrosetti-Rabinowitz condition
    Appolloni, Luigi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
  • [43] NONHOMOGENEOUS DIRICHLET PROBLEMS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Li, Gang
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    Zhang, Qihu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (01) : 55 - 77
  • [44] Multiple solutions for semilinear cone elliptic equations without Ambrosetti-Rabinowitz condition
    Nhu Thang Nguyen
    Thi Thu Huong Nguyen
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (03) : 747 - 767
  • [45] A multiplicity result for a nonlinear fractional Schrodinger equation in RN without the Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 498 - 522
  • [46] HOMOCLINIC ORBITS FOR SUPERLINEAR HAMILTONIAN SYSTEMS WITHOUT AMBROSETTI-RABINOWITZ GROWTH CONDITION
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) : 1241 - 1257
  • [47] On the Double Phase Variational Problems Without Ambrosetti-Rabinowitz Condition
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (SUPPL 1) : 257 - 269
  • [48] Infinitely Many Solutions for Semilinear Δγ-Differential Equations in RN without the Ambrosetti-Rabinowitz Condition
    Duong Trong Luyen
    Le Thi Hong Hanh
    MINIMAX THEORY AND ITS APPLICATIONS, 2020, 5 (01): : 7 - 18
  • [49] Multiplicity of solutions for a class of fractional p(x, .)-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition
    Hamdani, M. K.
    Zuo, Jiabin
    Chung, N. T.
    Repovs, D. D.
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01):
  • [50] On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition
    Tan, Zhong
    Fang, Fei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) : 3902 - 3915