Modified Lagrangian Methods for Separable Optimization Problems

被引:2
|
作者
Hamdi, Abdelouahed [1 ]
Mukheimer, Aiman A. [1 ]
机构
[1] Prince Sultan Univ, Dept Math & Phys Sci, Riyadh 11586, Saudi Arabia
关键词
PROXIMAL DECOMPOSITION; MULTIPLIER METHODS; PARTIAL INVERSES; CONVEX-PROGRAMS; CONVERGENCE; ALGORITHM;
D O I
10.1155/2012/471854
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convergence analysis of a new decomposition method to solve structured optimization problems. The proposed scheme is based on a class of modified Lagrangians combined with the allocation of resources decomposition algorithm. Under mild assumptions, we show that the method generates convergent primal-dual sequences.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] About Lagrangian Methods in Integer Optimization
    Antonio Frangioni
    Annals of Operations Research, 2005, 139 : 163 - 193
  • [32] CONVERGENCE RATES OF INERTIAL PRIMAL-DUAL DYNAMICAL METHODS FOR SEPARABLE CONVEX OPTIMIZATION PROBLEMS
    He, Xin
    Hu, Rong
    Fang, Ya Ping
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3278 - 3301
  • [33] A modified perturbed Lagrangian formulation for contact problems
    Tur, Manuel
    Albelda, Jose
    Manuel Navarro-Jimenez, Jose
    Jose Rodenas, Juan
    COMPUTATIONAL MECHANICS, 2015, 55 (04) : 737 - 754
  • [34] GLOBAL CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS APPLIED TO OPTIMIZATION PROBLEMS WITH DEGENERATE CONSTRAINTS, INCLUDING PROBLEMS WITH COMPLEMENTARITY CONSTRAINTS
    Izmailov, A. F.
    Solodov, M. V.
    Uskov, E. I.
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1579 - 1606
  • [35] A modified perturbed Lagrangian formulation for contact problems
    Manuel Tur
    Jose Albelda
    Jose Manuel Navarro-Jimenez
    Juan Jose Rodenas
    Computational Mechanics, 2015, 55 : 737 - 754
  • [36] THE EXPANDED LAGRANGIAN SYSTEM FOR CONSTRAINED OPTIMIZATION PROBLEMS
    POORE, AB
    ALHASSAN, Q
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (02) : 417 - 427
  • [37] Lagrangian regularization approach to constrained optimization problems
    Pan, SH
    Li, XS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (08) : 1207 - 1219
  • [38] Augmented Lagrangian functions for constrained optimization problems
    Zhou, Y. Y.
    Yang, X. Q.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (01) : 95 - 108
  • [39] A nonlinear Lagrangian approach to constrained optimization problems
    Yang, XQ
    Huang, XX
    SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (04) : 1119 - 1144
  • [40] Augmented Lagrangian Duality for Composite Optimization Problems
    Kan, Chao
    Song, Wen
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (03) : 763 - 784